ImageVerifierCode 换一换
格式:DOC , 页数:3 ,大小:30KB ,
资源ID:4139355      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4139355.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(正五边形尺规作图的画法及其他.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

正五边形尺规作图的画法及其他.doc

1、正五边形尺规作图的画法及其他 正五边形的画法 圆内接正五边形的画法如下: 1、 作一个圆,设它的圆心为O; 2、作圆的两条互相垂直的直径AZ和XY; 3、作OY的中点M; 4、以点M为圆心,MA为半径作圆,交OX于点N; 5、以点A为圆心,AN为半径,在圆上连续截取等弧,使弦AB=BC=CD=DE=AN,则五边形ABCDE即为正五边形。 以上两种图形的作法运用了所求图形边长与已知的线段长度的关系,用构造直角三角形的方法作出与所求图形的边长相等的线段,从而作出整个图形,这是尺规作图中常用的一种方法——等线段法,即用已知图形的线段作出与所求图形边长相等的线段。 正多边形

2、的尺规作图是大家感兴趣的.正三边形很好做;正四边形稍难一点;正六边形也很好做;正五边形就更难一点,但人们也找到了正五边形的直规作图方法.确实,有的困难一些,有的容易一些.正七边形的尺规作图是容易一些,还是困难一些呢?人们很久很久未找到作正七边形的办法,这一事实本身就说明作正七边形不容易;一直未找到这种作法,也使人怀疑:究竟用尺规能否作出正七边形来?数学不容许有这样的判断:至今一直没有人找到正七边形的尺规作图方法来,所以断言它是不能用尺规作出的.      人们迅速地解决了正三、四、五、六边形的尺规作图问题,却在正七边形面前止步了:究竟能作不能作,得不出结论来.这个悬案一直悬而未决两千余年.

3、       17世纪的费马,就是我们在前面已两次提到了的那个法国业余数学家,他研究了形如 Fi (i为右下角标)=22i(底数2指数2的i次幂)+1 的数. 费马的一个著名猜想是,当 n≥3时,不定方程xn+yn=zn没有正整数解.现在他又猜测Fi都是素数,对于i=0,1,2,3,4时,容易算出来相应的Fi: F0=3,F1=5,F2=17, F3=257,F4=65 537      验证一下,这五个数的确是素数.F5=225+1是否素数呢?仅这么一个问题就差不多一百年之后才有了一个结论,伟大的欧拉发现它竟不是素数,因而,伟大的费马这回可是猜错了!F5是两素数之积: F5=64

4、1×6 700 417.      当然,这一事例多少也说明:判断一个较大的数是否素数也决不是件简单的事,不然,何以需要等近百年?何以需要欧拉这样的人来解决问题?      更奇怪的是,不仅F5不是素数,F6,F7也不是素数,F8,F9,F10,F11等还不是素数,甚至,对于F14也能判断它不是素数,但是它的任何真因数还不知道.至今,人们还只知F0,F1,F2,F3,F4这样5个数是素数.由于除此而外还未发现其他素数,于是人们产生了一个与费马的猜想大相径庭的猜想,形如22i+1的素数只有有限个.但对此也未能加以证明.      当然,形如Fi=22i+1的素数被称为费马素数.由于素数分解

5、的艰难,不仅对形如Fi=22i+1的数的一般结论很难做出,而且具体分解某个Fi也不是一件简单的事.      更加令人惊奇的事情发生在距欧拉发现F5不是素数之后的60多年,一位德国数学家高斯,在他仅20岁左右之时发现,当正多边形的边数是费马素数时是可以尺规作图的,他发现了更一般的结论:正n边形可尺规作图的充分且必要的条件是 n=2k(2的k次幂)或 2k×p1×p2×…×ps,(1,2…s为右下角标)      其中,p1,p2,…,ps是费马素数.      正7边形可否尺规作图呢?否!因为7是素数,但不是费马素数.      倒是正17边形可尺规作图,高斯最初的一项成就就是作出了

6、正17边形.根据高斯的理论,还有一位德国格丁根大学教授作了正257边形.      就这样,一个悬而未决两千余年的古老几何问题得到了圆满的解决,而这一问题解决的过程是如此的蹊跷,它竟与一个没有猜对的猜想相关连.      正17边形被用最简单的圆规和直尺作出来了,而正多边形可以换个角度被视为是对圆的等分,那么这也相当于仅用圆规和直尺对圆作了17等分,其图形更觉完美、好看.高斯本人对此也颇为欣赏,由此引导他走上数学道路(他早期曾在语言学与数学之间犹豫过),而且在他逝后的墓碑上就镌刻着一个正17边形图案.      高斯把问题是解决得如此彻底,以致有了高斯的定理,我们对于早已知道如何具体作图的正三边形、正五边形,还进而知道了它们为什么能用尺规作图,就因为3和5都是费马素数(3=F0,5=F1);对于很久以来未找到办法来作出的正七边形,乃至于正11边形、正 13边形,现在我们能有把握地说,它们不可能由尺规作图,因为7、11、13都不是费马素数;对于正257边形、正65 537边形,即使我们不知道具体如何作,可是理论上我们已经知道它们是可尺规作图的;此外,为什么正四边形、正六边形可尺规作图呢?因为4=22,因为 6= 2· 3而 3=F0.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服