1、因式分解提公因式法【知识精读】 如果多项式的各项有公因式,根据乘法分配律的逆运算,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式。 提公因式法是因式分解的最基本也是最常用的方法。它的理论依据就是乘法分配律。多项式的公因式的确定方法是: (1)当多项式有相同字母时,取相同字母的最低次幂。 (2)系数和各项系数的最大公约数,公因式可以是数、单项式,也可以是多项式。下面我们通过例题进一步学习用提公因式法因式分解【分类解析】 1. 把下列各式因式分解 (1) (2) 分析:(1)若多项式的第一项系数是负数,一般要提出“”号,使括号内的第一项系数是正数,在提出“”号后,多项式的各项都要变号。
2、解: (2)有时将因式经过符号变换或将字母重新排列后可化为公因式,如:当n为自然数时,是在因式分解过程中常用的因式变换。 解: 2. 利用提公因式法简化计算过程 例:计算 分析:算式中每一项都含有,可以把它看成公因式提取出来,再算出结果。 解:原式 3. 在多项式恒等变形中的应用 例:不解方程组,求代数式的值。 分析:不要求解方程组,我们可以把和看成整体,它们的值分别是3和,观察代数式,发现每一项都含有,利用提公因式法把代数式恒等变形,化为含有和的式子,即可求出结果。 解: 把和分别为3和带入上式,求得代数式的值是。 4. 在代数证明题中的应用 例:证明:对于任意自然数n,一定是10的倍数。
3、分析:首先利用因式分解把代数式恒等变形,接着只需证明每一项都是10的倍数即可。 对任意自然数n,和都是10的倍数。 一定是10的倍数5、中考点拨: 例1。因式分解 解: 说明:因式分解时,应先观察有没有公因式,若没有,看是否能通过变形转换得到。 例2分解因式: 解: 说明:在用提公因式法分解因式前,必须对原式进行变形得到公因式,同时一定要注意符号,提取公因式后,剩下的因式应注意化简。题型展示: 例1. 计算: 精析与解答: 设,则 说明:此题是一个有规律的大数字的运算,若直接计算,运算量必然很大。其中2000、2001重复出现,又有的特点,可通过设未知数,将复杂数字间的运算转化为代数式,再利用
4、多项式的因式分解化简求值,从而简化计算。 例2. 已知:(b、c为整数)是及的公因式,求b、c的值。 分析:常规解法是分别将两个多项式分解因式,求得公因式后可求b、c,但比较麻烦。注意到是及的因式。因而也是的因式,所求问题即可转化为求这个多项式的二次因式。 解:是及的公因式 也是多项式的二次因式 而 b、c为整数 得: 说明:这是对原命题进行演绎推理后,转化为解多项式,从而简便求得。 例3. 设x为整数,试判断是质数还是合数,请说明理由。 解: 都是大于1的自然数 是合数 说明:在大于1的正数中,除了1和这个数本身,还能被其它正整数整除的数叫合数。只能被1和本身整除的数叫质数。【实战模拟】 1
5、. 分解因式: (1) (2)(n为正整数) (3) 2. 计算:的结果是( ) A. B. C. D. 3. 已知x、y都是正整数,且,求x、y。4. 证明:能被45整除。 5. 化简:,且当时,求原式的值。试题答案 1. 分析与解答: (1) (2) (3)原式 注意:结果多项因式要化简,同时要分解彻底。 2. B 3. 是正整数 分解成 又与奇偶性相同,且 说明:求不定方程的整数解,经常运用因式分解来解决。 4. 证明: 能被45整除 5. 解:逐次分解:原式 当时,原式因式分解公式法【知识精读】 把乘法公式反过来,就可以得到因式分解的公式。 主要有:平方差公式 完全平方公式 立方和、立
6、方差公式 补充:欧拉公式: 特别地:(1)当时,有 (2)当时,欧拉公式变为两数立方和公式。 运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式。但有时需要经过适当的组合、变形后,方可使用公式。 用公式法因式分解在求代数式的值,解方程、几何综合题中也有广泛的应用。因此,正确掌握公式法因式分解,熟练灵活地运用它,对今后的学习很有帮助。下面我们就来学习用公式法进行因式分解【分类解析】 1. 把分解因式的结果是( ) A. B. C. D. 分析:。 再利用平方差公式进行分解,最后得到,故选择B。说明:解这类题目时,一般先观察现有项的特征,通过添加项凑成符合公式的形式。同时要注意分
7、解一定要彻底。 2. 在简便计算、求代数式的值、解方程、判断多项式的整除等方面的应用 例:已知多项式有一个因式是,求的值。 分析:由整式的乘法与因式分解互为逆运算,可假设另一个因式,再用待定系数法即可求出的值。 解:根据已知条件,设 则 由此可得 由(1)得 把代入(2),得 把代入(3),得 3. 在几何题中的应用。 例:已知是的三条边,且满足,试判断的形状。 分析:因为题中有,考虑到要用完全平方公式,首先要把转成。所以两边同乘以2,然后拆开搭配得完全平方公式之和为0,从而得解。 解: 为等边三角形。 4. 在代数证明题中应用 例:两个连续奇数的平方差一定是8的倍数。 分析:先根据已知条件把
8、奇数表示出来,然后进行变形和讨论。 解:设这两个连续奇数分别为(为整数) 则 由此可见,一定是8的倍数。5、中考点拨: 例1:因式分解:_。 解: 说明:因式分解时,先看有没有公因式。此题应先提取公因式,再用平方差公式分解彻底。 例2:分解因式:_。 解: 说明:先提取公因式,再用完全平方公式分解彻底。题型展示: 例1. 已知:, 求的值。 解: 原式 说明:本题属于条件求值问题,解题时没有把条件直接代入代数式求值,而是把代数式因式分解,变形后再把条件带入,从而简化计算过程。 例2. 已知, 求证: 证明: 把代入上式, 可得,即或或 若,则, 若或,同理也有 说明:利用补充公式确定的值,命题
9、得证。 例3. 若,求的值。 解: 且 又 两式相减得 所以 说明:按常规需求出的值,此路行不通。用因式分解变形已知条件,简化计算过程。【实战模拟】 1. (1) 解:原式 说明:把看成整体,利用平方差公式分解。(2)(2)解:原式 (3)(3)解:原式 2. 已知:,求的值。解: 3. 若是三角形的三条边,求证:分析与解答:由于对三角形而言,需满足两边之差小于第三边,因此要证明结论就需要把问题转化为两边差小于第三边求得证明。 证明: 是三角形三边 且 即4. 已知:,求的值。解 ,即 5. 已知是不全相等的实数,且,试求 (1)的值;(2)的值。分析与解答:(1)由因式分解可知 故需考虑值的
10、情况,(2)所求代数式较复杂,考虑恒等变形。 解:(1) 又 而 不全相等 (2) 原式 而,即 原式 说明:因式分解与配方法是在代数式的化简与求值中常用的方法。因式分解分组分解法【知识精读】 分组分解法的原则是分组后可以直接提公因式,或者可以直接运用公式。使用这种方法的关键在于分组适当,而在分组时,必须有预见性。能预见到下一步能继续分解。而“预见”源于细致的“观察”,分析多项式的特点,恰当的分组是分组分解法的关键。 应用分组分解法因式分解,不仅可以考察提公因式法,公式法,同时它在代数式的化简,求值及一元二次方程,函数等学习中也有重要作用。 下面我们就来学习用分组分解法进行因式分解。【分类解析
11、】1. 在数学计算、化简、证明题中的应用 例1. 把多项式分解因式,所得的结果为( ) 分析:先去括号,合并同类项,然后分组搭配,继续用公式法分解彻底。 解:原式 故选择C 例2. 分解因式 分析:这是一个六项式,很显然要先进行分组,此题可把分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;此题也可把,分别看作一组,此时的六项式变成三项式,提取公因式后再进行分解。 解法1: 解法2: 2. 在几何学中的应用 例:已知三条线段长分别为a、b、c,且满足 证明:以a、b、c为三边能构成三角形 分析:构成三角形的条件,即三边关系定理,是“两边之和大于第三边,两边之差小于第三边” 证明:
12、 3. 在方程中的应用 例:求方程的整数解 分析:这是一道求不定方程的整数解问题,直接求解有困难,因等式两边都含有x与y,故可考虑借助因式分解求解 解: 4、中考点拨 例1.分解因式:_。 解: 说明:观察此题是四项式,应采用分组分解法,中间两项虽符合平方差公式,但搭配在一起不能分解到底,应把后三项结合在一起,再应用完全平方公式和平方差公式。 例2分解因式:_ 解: 说明:前两项符合平方差公式,把后两项结合,看成整体提取公因式。 例3. 分解因式:_ 解: 说明:分组的目的是能够继续分解。5、题型展示: 例1. 分解因式: 解: 说明:观察此题,直接分解比较困难,不妨先去括号,再分组,把4mn
13、分成2mn和2mn,配成完全平方和平方差公式。 例2. 已知:,求ab+cd的值。 解:ab+cd= 说明:首先要充分利用已知条件中的1(任何数乘以1,其值不变),其次利用分解因式将式子变形成含有ac+bd因式乘积的形式,由ac+bd=0可算出结果。 例3. 分解因式: 分析:此题无法用常规思路分解,需拆添项。观察多项式发现当x=1时,它的值为0,这就意味着的一个因式,因此变形的目的是凑这个因式。 解一(拆项): 解二(添项): 说明:拆添项法也是分解因式的一种常见方法,请同学们试拆一次项和常数项,看看是否可解?【实战模拟】 1. 填空题: (1)解: (2)解: (3)解: 2. 已知:解:
14、 说明:因式分解是一种重要的恒等变形,在代数式求值中有很大作用。3. 分解因式:解: 4. 已知:,试求A的表达式解: 5. 证明: 证明: 因式分解十字相乘法【知识精读】 对于首项系数是1的二次三项式的十字相乘法,重点是运用公式进行因式分解。掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。 对于二次三项(a、b、c都是整数,且)来说,如果存在四个整数满足,并且,那么二次三项式即可以分解为。这里要确定四个常数,分析和尝试都要比首项系数是1的类型复杂,因此一般要借助画十字交叉线的办法来确定。 下面我们一起来学习用十字相乘法因式分解。【分类解析】 1.
15、在方程、不等式中的应用 例1. 已知:,求x的取值范围。 分析:本题为二次不等式,可以应用因式分解化二次为一次,即可求解。 解: 例2. 如果能分解成两个整数系数的二次因式的积,试求m的值,并把这个多项式分解因式。 分析:应当把分成,而对于常数项-2,可能分解成,或者分解成,由此分为两种情况进行讨论。 解:(1)设原式分解为,其中a、b为整数,去括号,得: 将它与原式的各项系数进行对比,得: 解得: 此时,原式 (2)设原式分解为,其中c、d为整数,去括号,得: 将它与原式的各项系数进行对比,得: 解得: 此时,原式 2. 在几何学中的应用 例. 已知:长方形的长、宽为x、y,周长为16cm,
16、且满足,求长方形的面积。 分析:要求长方形的面积,需借助题目中的条件求出长方形的长和宽。 解: 或 又 解得:或 长方形的面积为15cm2或 3、在代数证明题中的应用 例. 证明:若是7的倍数,其中x,y都是整数,则是49的倍数。 分析:要证明原式是49的倍数,必将原式分解成49与一个整数的乘积的形式。 证明一: 是7的倍数,7y也是7的倍数(y是整数) 是7的倍数 而2与7互质,因此,是7的倍数,所以是49的倍数。 证明二:是7的倍数,设(m是整数) 则 又 x,m是整数,也是整数 所以,是49的倍数。4、中考点拨 例1.把分解因式的结果是_。 解: 说明:多项式有公因式,提取后又符合十字相
17、乘法和公式法,继续分解彻底。 例2.:因式分解:_ 解:说明:分解系数时一定要注意符号,否则由于不慎将造成错误。5、题型展示 例1. 若能分解为两个一次因式的积,则m的值为( ) A. 1B. -1C. D. 2 解: -6可分解成或,因此,存在两种情况: 由(1)可得:,由(1)可得: 故选择C。 说明:对二元二次多项式分解因式时,要先观察其二次项能否分解成两个一次式乘积,再通过待定系数法确定其系数,这是一种常用的方法。 例2. 已知:a、b、c为互不相等的数,且满足。 求证: 证明: 说明:抓住已知条件,应用因式分解使命题得证。 例3. 若有一因式。求a,并将原式因式分解。 解:有一因式
18、当,即时, 说明:由条件知,时多项式的值为零,代入求得a,再利用原式有一个因式是,分解时尽量出现,从而分解彻底。【实战模拟】 1. 分解因式:(1) (2)(3)2. 在多项式,哪些是多项式的因式?3. 已知多项式有一个因式,求k的值,并把原式分解因式。4. 分解因式: 5. 已知:,求的值。【试题答案】 1. (1)解:原式 (2)解:原式 (3)解:原式 2. 解: 其中是多项式的因式。 说明:先正确分解,再判断。 3. 解:设 则 解得:且 说明:待定系数法是处理多项式问题的一个重要办法,所给多项式是三次式,已知有一个一次因式,则另一个因式为二次式,由多项式乘法法则可知其二次项系数为1。 4. 解:简析:由于项数多,直接分解的难度较大,可利用待定系数法。 设 比较同类项系数,得: 解得: 5. 解: 说明:用因式分解可简化计算。
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100