1、自动控制原理综合训练项目 题目:关于MSD系统控制的设计 目 录 1设计任务及要求分析3 1。1初始条件3 1。2要求完成的任务3 1。3任务分析4 2系统分析及传递函数求解4 2。1系统受力分析4 2.2 传递函数求解9 2。3系统开环传递函数的求解9 3。用MATLAB对系统作开环频域分析10 3。1开环系统波特图10 3。2开环系统奈奎斯特图及稳定性判断12 4。系统开环频率特性各项指标的计算14 总结17 参考文献18 弹簧-质量—阻尼器系统建模与频率特性分析 1设计任务及要求分析 1.1初始条件 已知机械系统如图.
2、 y p m x 图1.1 机械系统图 1。2要求完成的任务 (1) 推导传递函数,, (2) 给定,以p为输入 (3) 用Matlab画出开环系统的波特图和奈奎斯特图,并用奈奎斯特判据分析系统的稳定性。 (4) 求出开环系统的截止频率、相角裕度和幅值裕度。 (5) 对上述任务写出完整的课程设计说明书,说明书中必须进行原理分析,写清楚分析计算的过程及其比较
3、分析的结果,并包含Matlab源程序或Simulink仿真模型,说明书的格式按照教务处标准书写。 1。3任务分析 由初始条件和要求完成的主要任务,首先对给出的机械系统进行受力分析,列出相关的微分方程,对微分方程做拉普拉斯变换,将初始条件中给定的数据代入,即可得出,两个传递函数。由于本系统是一个单位负反馈系统,故求出的传递函数即为开环传函.后在MATLAB中画出开环波特图和奈奎斯特图,由波特图分析系统的频率特性,并根据奈奎斯特判据判断闭环系统位于右半平面的极点数,由此可以分析出系统的稳定性。最后再计算出系统的截止频率、相角裕度和幅值裕度,并进一步分析其稳定性能。 2系统分析及传递函数求解
4、 2。1系统受力分析 单自由度有阻尼振系的力学模型如图2—1所示,包括弹簧、质量及阻尼器.以物体的平衡位置0为原点,建立图示坐标轴x。则物体运动微分方程为 (2-1) 式中 : 为阻尼力,负号表示阻尼力方向与速度方向相反。 图2—1 将上式写成标准形式,为 (2-2) 令p2=, , 则上式可简化为 (2—3) 这就是有阻尼自由振动微分方程.它的解可取,其中 s是待定常数。代入(2—1)式得 ,要使所有时间内上式都能满足,必须,此即微分方程的特征方程,其解为 (2—4) 于是微分方程(2—1)的通解为 (2—5) 式中待定常数c1与c2决定与
5、振动的初始条件.振动系统的性质决定于根式是实数、零、还是虚数。对应的根s1与s2可以是不相等的负实根、相等的负实根或复根.若s1与s2为等根时,此时的阻尼系数值称之为临界阻尼系数,记为cc,即cc=2mp.引进一个无量纲的量,称为相对阻尼系数或阻尼比。 (2-6) 当n〉p或〉1,根式是实数,称为过阻尼状态,当n〈p或<1,根式是虚数,称为弱阻尼状态,当n=p,即=1,称为临界阻尼状态。现分别讨论三种状态下的运动特性。 1.过阻尼状态 此时〉1,即〈n,(b)式中s1及s2均为负值,则及是两根下降的指数曲线,故(2—2)式所表示的是两条指数曲线之和,仍
6、按指数衰减,不是振动。图3—2所示为c1>c2,c1〈0时的情况。 图2—2 2。临界阻尼状态 此时=1,(b)式中s1=s2=-n=-p,特征方程的根是重根,方程(2—1)的另一解将为te-pt,故微分方程(2—1)的通解为 x=(c1+c2t)e-pt(2—7) 式中等号右边第一项c1e-pt是一根下降的指数曲线,第二项则可应用麦克劳林级数展开成以下形式: (2-8) 从上式看出,当时间t增长时,第二项c2te-pt也趋近于零。因此(c)式表示的运动也不是振动,也是一个逐渐回到平衡位置的非周期运动。 3。弱阻尼状态 此时p〉n,或〈
7、1.利用欧拉公式 (2—9) 可将(2—2)式改写为 (2—10) 或 (1—11) 令,则 (2—12) 式中A与为待定常数,决定于初始条件.设t=0时,x=x0,,则可求得 (2—13) 将A与代入(2—4)式,即可求得系统对初始条件的响应,由式(2—13)可知,系统振动已不再是等幅的简谐振动,而是振幅被限制在曲线之内随时间不断衰减的衰减振动。如图3—3所示。 图2-3 这种衰减振动的固有圆频率、固有频率和周期分别为 (2—14) (2—15) 式中P、f、T是无阻尼自由振动的固有圆频率、固有频率和周期。 由上可见,阻尼对自由振动的影响有两个方面:一
8、方面是阻尼使自由振动的周期增大、频率减小,但在一般工程问题中n都比P小得多,属于小阻尼的情况。例=n/p=0。05时,fd=0。9990f,Td=1.00125T;而在=0。20时,fd=0.98f,Td=1。02T,所以在阻尼比较小时,阻尼对系统的固有频率和周期的影响可以略去不计,即可以近似地认为有阻尼自由振动的频率和周期与无阻尼自由振动的频率和周期相等。另一方面,阻尼对于系统振动振幅的影响非常显著,阻尼使振幅随着时间不断衰减,其顺次各个振幅是:t=t1时,A1=Ae-nt1;t=t1+Td时,A2=A;t=t1+2Td时,A3=A,…。。.而相邻两振幅之比是个常数。即
9、 (2-16) 式中η称为减幅系数或振幅衰减率,n称为衰减系数,n越大表示阻尼越大,振幅衰减也越快。当=0。05时,η=1。37,A2=A1/1。37=0.73A1,每一个周期内振幅减少27%,振幅按几何级数衰减,经过10次振动后,振幅将减小到初值的4。3%.可见,衰减是非常显著的.在工程上,通常取(2-6)式的自然对数以避免取指数的不便,即 (2—17) 式中δ称为对数减幅或对数衰减率. 将代入,得 (2—18) 当 〈<1时,
10、 δ≈2π (2-19) 因为任意两个相邻的振幅之比是一个常数enTd,即 故有 因此对数减幅δ也可表达为 (2-20) 此外,根据(3—6)式,可以用实测法来求得系统的阻尼系数.因为 故 (2—21) 所以只要实测得出衰减振动的周期Td及相邻两次振幅Aj和Aj+1,即可计算出系统的阻尼系数C. 根据弹簧和阻尼器的特性可得以下关系式: Fk1(t)=k1x(t), Fk2(t)=k2
11、[x(t)-y(t)], Fb2(t)=b2dy(t)/dt 设不加p(t)时,质量块处于平衡状态,此时x=0,y=0,即x(0)=0,y(0)=0,根据受力平衡方程,在不计重力时,可得出以下方程: k2[x(t)—y(t)]=b2dy(t)/dt (2—22) 又根据牛顿第二定律,有方程: md2x(t)/dt2=p(t)-Fk1(t)-Fk2(t)-Fb2(t) (2—23) 2。2 传递函数求解 (1)求Y(s)/X(s): 对式(2—1)进行拉普拉斯变换,得:k2X(s)-k2Y(s)=b2*sY(s),化简得传递函数:
12、 Y(s)/X(s)=k2/(b2s+k2)(2-24) (2)求X(s)/P(s): 对式(2—2)进行拉普拉斯变换,得:ms2X(s)=P(s)-k1X(s)-2k2[X(s)-Y(s)],并将式(2—3)代入可解得传递函数:X(s)/P(s)=(b2s+k2)/[mb2s3+mk2s2+b2(k1+2k2)s+k1k2] (2—25) 已知条件为:给定,设是输入的阶跃力. 将所给参数代入传递函数式(2—3)和式(2—4)中,可求得具体的传递函数如下:
13、 Y(s)/X(s)=5/(0。6s+5) (2-26) X(s)/P(s)=(0.6s+5)/(1。2*10^—4s3+10^—3s2+10。8s+40) (2—27) 2。3系统开环传递函数的求解 (1)对于Y(s)/X(s): 由微分方程Y(s)/X(s)=5/(0。6s+5)可画出单位负反馈系统方框结构图如下: 5/(0.6s+5) X(s) Y(s) 故开环传递函数为:G(S)=5/(0.6s+5) (2)对于X(s)/P(s): 由微分方程ms2X(s)=P
14、s)-k1X(s)-2k2[X(s)-Y(s)]及Y(s)/X(s)=k2/(b2s+k2)可画出系统方框结构图如下: P(s) X(s) 故开环传递G(s)= 3。用MATLAB对系统作开环频域分析 3。1开环系统波特图 (1)对于Y(s)/X(s): 画波特图时采用的MATLAB语句如下: >〉 num=[5];den=([0。6,5]); 〉〉 margin(num,den) %画系统的开环对数幅频、相频特性运行结果如图3-1 图
15、3-1 Y(s)/X(s)的开环波特图 (2)对于X(s)/P(s): G(s)= 画波特图时采用的MATLAB语句如下: 〉〉 num=[0.6,5];den=([]); 〉〉 margin(num,den) %画系统的开环对数幅频、相频特性运行结果如图3-2所示: 图3—2 X(s)/P(s)的开环波特图 3。2开环系统奈奎斯特图及稳定性判断 (1)对于Y(s)/X(s) 画奈奎斯特图时MATLAB语句如下: >〉 num=[5]; >〉 den=[0。6,5]; >〉 nyquist(num,den) 运行结果如图3—3所示
16、 图3-3 Y(s)/X(s)开环奈奎斯特图 开环传函,由于系统开环传递函数不存在右半平面的极点,故P=0,从系统的开环幅相曲线不能包围(-1,j0)点周数N=0,则系统位于右半平面的闭环极点数为:Z=P—2N=0,故系统是稳定的. (2)对于X(s)/P(s) 画奈奎斯特图时MATLAB语句如下: >> num=[0。6,5]; >〉 den=[]; 〉> nyquist(num,den) 运行结果如图3—4所示: 图3—4 X(s)/P(s)开环奈奎斯特图 开环传函G(s)=由于系统开环传递函数不存在右半平面的极点,故P=0,从系统的开环幅相曲线不能包围(—1,j
17、0)点周数N=0,则系统位于右半平面的闭环极点数为:Z=P—2N=0,故系统是稳定的。 4。系统开环频率特性各项指标的计算 (1)对于Y(s)/X(s): 计算各项频率指标时采用的MATLAB语句如下: >〉 num=[5];den=([0.6,5]); >〉 margin(num,den); 〉〉 [gm,pm,wcg,wcp]=margin(num,den) 计算幅值裕度gm()、相位裕度pm()、穿越频率wcg()、截止频率wcp()。 运行结果 gm = Inf pm = 180 wcg = NaN wcp = 0
18、 由结果可知该系统幅值裕度为无穷,截止频率为0,相位裕度为180是正值,故系统稳定。 (2)对于X(s)/P(s) :G(s)= 计算各项频率指标时采用的MATLAB语句如下: 〉> num=[0。6,5];den=([1.2*10^—4,10^—3,10.8,40]) 〉〉 margin(num,den); 〉〉 [gm,pm,wcg,wcp]=margin(num,den) 计算幅值裕度gm()、相位裕度pm()、穿越频率wcg()、截止频率wcp(). 运行结果 gm = Inf pm = 15。6933 wcg = In
19、f wcp = 307.8588 由结果可知该系统幅值裕度为无穷,截止频率为308rad/s,相位裕度为15。7是正值,故系统稳定。 总结 本次课设是对一个弹簧-质量—阻尼器系统建模并进行频率特性分析.首先根据这个实际的机械系统的受力分析得出它的受力微分方程,对其进行拉普拉斯变换,可以得出传递函数。在求开环传递函数的过程中我遇到了一些困难,在老师的指点和同学的帮助下我发现自己其实把问题想得过于复杂了,原来这是一个单位负反馈的稳定系统,求出的传递函数即为开环传函。接下来便是MATLAB的应用,利用MATLAB可以轻松地对系统做出频率特性分析,画出Bode图和奈奎斯特图,并通过奈奎斯
20、特判据判断闭环系统的稳定性。也可以利用MATLAB语句直接求出各项频率特性指标,从而可以进一步对系统做出分析,完成既定目标。 通过本次课设,加强了我对MATLAB程序的应用能力,这是一款功能强大而又实用性很强的程序,对于我们专业的学习有着很强的帮助性;另一方面也加强了我对课本理论知识的理解,通过MATLAB的分析也印证了平时自己学习理论知识时所用分析方法的正确性。最后通过本次课设也提高了我个人独立思考、查阅资料和解决问题的能力,使我受益匪浅。 参考文献 [1] 王子才。 控制系统设计手册. 北京:国防工业出版社,1993 [2] 王树青,乐嘉谦. 自动化与仪表工程师手册. 北京:化学工业出版社,2010 [3] 黄德先等. 过程控制系统。 北京:清华大学出版社,2011 [4] 蒋慰孙,俞金寿. 过程控制工程。 第二版。 北京:中石化出版社,2004 [5] 黄德先等. 化工过程先进控制。 北京:化学工业出版社,2006 [6] 王孝武,方敏,葛锁良.《自动控制理论》。北京:机械工业出版社。2009 [7] 胡寿松.《自动控制原理(第五版)》.科学出版社。2007 [8] 胡寿松。《自动控制原理习题解析》。科学出版社.2007
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818