1、文档仅供参考,如有不当之处,请联系改正。基本原理组合排列排列数公式组合数公式组合数性质应用问题 知识结构网络图:知识结构网络图:第1页文档仅供参考,如有不当之处,请联系改正。名称内容分类原理分类原理分步原理分步原理定定 义义相同点相同点不一样点两个原理区分与联络:两个原理区分与联络:做一件事或完成一项工作方法数做一件事或完成一项工作方法数直接(直接(分类分类)完成)完成间接(间接(分步骤分步骤)完成)完成做一件事,完成它能够有做一件事,完成它能够有n类方类方法,第法,第i类方法中有类方法中有mi种不一样种不一样方法,那么完成这件事共有方法,那么完成这件事共有 N=m1+m2+m3+mn 种不一
2、样种不一样方法方法做一件事,完成它能够有做一件事,完成它能够有n个步个步骤,做第骤,做第i步中有步中有mi种不一样方种不一样方法,那么完成这件事共有法,那么完成这件事共有 N=m1m2m3mn 种不一样种不一样方法方法.第2页文档仅供参考,如有不当之处,请联系改正。排列和组合区分和联络:排列和组合区分和联络:名名 称称排排 列列组组 合合定义定义种数种数符号符号计算计算公式公式关系关系性质性质 ,从从n个不一样元素中取出个不一样元素中取出m个元个元素,素,按一定次序按一定次序排成一列排成一列从从n个不一样元素中取出个不一样元素中取出m个元个元素,素,把它并成把它并成一组一组全部排列个数全部排列
3、个数全部组合个数全部组合个数第3页文档仅供参考,如有不当之处,请联系改正。一一.特殊元素和特殊位置优先策略特殊元素和特殊位置优先策略例例1.由由0,1,2,3,4,5能够组成多少个没有重复数字能够组成多少个没有重复数字 五位奇数五位奇数.解解:因为末位和首位有特殊要求因为末位和首位有特殊要求,应该优先安应该优先安 排这两个位置排这两个位置.先排末位共有先排末位共有_ 然后排首位共有然后排首位共有_最终排其它位置共有最终排其它位置共有_由分步计数原理得由分步计数原理得=288位置分析法和元素分析法是处理排列组合问位置分析法和元素分析法是处理排列组合问题最惯用也是最基本方法题最惯用也是最基本方法,
4、若以元素分析为若以元素分析为主主,需先安排特殊元素需先安排特殊元素,再处理其它元素再处理其它元素.若若以位置分析为主以位置分析为主,需先满足特殊位置要求需先满足特殊位置要求,再再处理其它位置。处理其它位置。第4页文档仅供参考,如有不当之处,请联系改正。7 7种不一样花种在排成一列花盆里种不一样花种在排成一列花盆里,若两若两种葵花不种在中间,也不种在两端花盆种葵花不种在中间,也不种在两端花盆里里,问有多少不一样种法?问有多少不一样种法?练习1解一:分两步完成;解一:分两步完成;第一步选两葵花之外花占据两端和中间位置第一步选两葵花之外花占据两端和中间位置第二步排其余位置第二步排其余位置:解二:第一
5、步由葵花去占位解二:第一步由葵花去占位:第二步由其余元素占位:第二步由其余元素占位:第5页文档仅供参考,如有不当之处,请联系改正。二.相邻元素捆绑策略例例2.72.7人站成一排人站成一排,其中甲乙相邻且丙丁相其中甲乙相邻且丙丁相 邻邻,共有多少种不一样排法共有多少种不一样排法.甲甲乙乙丙丙丁丁由分步计数原理可得共有由分步计数原理可得共有种不一样排法种不一样排法=480解:可先将甲乙两元素捆绑成整体并看成解:可先将甲乙两元素捆绑成整体并看成 一个复合元素,同时丙丁也看成一个一个复合元素,同时丙丁也看成一个 复合元素,再与其它元素进行排列,复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排
6、。同时对相邻元素内部进行自排。要求某几个元素必须排在一起问题要求某几个元素必须排在一起问题,能能够用捆绑法来处理问题够用捆绑法来处理问题.即将需要相邻即将需要相邻元素合并为一个元素元素合并为一个元素,再与其它元素一再与其它元素一起作排列起作排列,同时要注意合并元素内部也同时要注意合并元素内部也必须排列必须排列.第6页文档仅供参考,如有不当之处,请联系改正。七个家庭一起外出旅游,若其中四七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小家是男孩,三家是女孩,现将这七个小孩站成一排摄影留念孩站成一排摄影留念。若三个女孩要站若三个女孩要站在一起,四个男孩也要站在一起,共有在一起,四个男
7、孩也要站在一起,共有多少种不一样排法?多少种不一样排法?不一样排法有:(种)练习2第7页文档仅供参考,如有不当之处,请联系改正。三三.不相邻问题插空策略不相邻问题插空策略例例3 3.一一个个晚晚会会节节目目有有4 4个个舞舞蹈蹈,2 2个个相相声声,3 3个个 独独唱唱,舞舞蹈蹈节节目目不不能能连连续续出出场场,则则节节目目标标出出 场场次次序序有有多多少少种种?解解:分两步进行第一步排分两步进行第一步排2 2个相声和个相声和3 3个独唱共个独唱共 有有 种,种,第二步将第二步将4 4舞蹈插入第一步排舞蹈插入第一步排好好5 5个元素中间包含首尾两个空位共有个元素中间包含首尾两个空位共有种种 不
8、一样方法不一样方法 由分步计数原理,节目不一样次序共有 种相相相相独独独独独独元素相离问题元素相离问题,可先把没有位置要求元素进行可先把没有位置要求元素进行排队排队,再把不相邻元素插入中间和两端再把不相邻元素插入中间和两端.第8页文档仅供参考,如有不当之处,请联系改正。马路上有编号为马路上有编号为1 1、2 2、3 399九盏路灯,九盏路灯,为节约用电,现要求把其中为节约用电,现要求把其中3 3盏灯关掉,盏灯关掉,但不能关掉相邻但不能关掉相邻2 2盏或盏或3 3盏,也不能关掉盏,也不能关掉两端路灯,则满足条件关灯方法有多少两端路灯,则满足条件关灯方法有多少种。种。练习3不一样关灯方法有:(种)
9、第9页文档仅供参考,如有不当之处,请联系改正。四四.定序问题缩定序问题缩倍倍(空位空位.插入插入)策略策略例例4.74.7人排队人排队,其中甲乙丙其中甲乙丙3 3人次序一定共有多人次序一定共有多 多少种不一样排法多少种不一样排法.解:(缩缩倍倍法法)对于某几个元素次序一定排列对于某几个元素次序一定排列问题问题,可先把这几个元素与其它元素一起可先把这几个元素与其它元素一起进行排列进行排列,然后用总排列数除以然后用总排列数除以这几个元这几个元素之间全排列数素之间全排列数,则共有不一样排法种数则共有不一样排法种数是:是:(空位法空位法)构想有)构想有7 7把椅子让除甲乙丙以外把椅子让除甲乙丙以外四人
10、就坐共有四人就坐共有 种方法,其余三个种方法,其余三个位置甲乙丙共有位置甲乙丙共有 种坐法,则共有种坐法,则共有 种种 方法方法1思索思索:能否让甲乙丙先坐能否让甲乙丙先坐?第10页文档仅供参考,如有不当之处,请联系改正。(插入法插入法)先排甲乙丙三个人先排甲乙丙三个人,共有共有1 1种排法种排法,再再 把其余把其余4 4四人四人依次依次插入共有插入共有 方法方法4*5*6*74*5*6*7定序问题能够用缩定序问题能够用缩倍倍法,还可转化为插法,还可转化为插空模型处理空模型处理练习题41010人身高各不相等人身高各不相等,排成前后排,每排排成前后排,每排5 5人人,要要求从左至右身高逐步增加,
11、共有多少种排法?求从左至右身高逐步增加,共有多少种排法?第11页文档仅供参考,如有不当之处,请联系改正。五五.多排问题直排策略多排问题直排策略例例5.85.8人排成前后两排人排成前后两排,每排每排4 4人人,其中甲乙在其中甲乙在 前排前排,丁在后排丁在后排,共有多少排法共有多少排法解解:8人排前后两排人排前后两排,相当于相当于8人坐人坐8把椅子把椅子,能够能够 把椅子排成一排把椅子排成一排.先在前先在前4个位置排甲乙两个位置排甲乙两个特殊元素有个特殊元素有_种种,再排后再排后4个位置上个位置上特殊元素有特殊元素有_种种,其余其余5人在人在5个位置个位置上任意排列有上任意排列有_种种,则共有则共
12、有_种种.前排后排后排普通地普通地,元素分成多排排列问题元素分成多排排列问题,可归结为一排考虑可归结为一排考虑,再分段研究再分段研究.第12页文档仅供参考,如有不当之处,请联系改正。1010名学生分坐两行,要求面对面坐下,名学生分坐两行,要求面对面坐下,但其中甲乙两位同学不可相邻也不可面但其中甲乙两位同学不可相邻也不可面对面,有多少种坐法?对面,有多少种坐法?练习题5共有(1)甲在两端:(2)甲不在两端:第13页文档仅供参考,如有不当之处,请联系改正。六六.排列组合混合问题先选后排策略排列组合混合问题先选后排策略例例6.6.有有5 5个不一样小球个不一样小球,装入装入4 4个不一样盒内个不一样
13、盒内,每盒最少装一个球每盒最少装一个球,共有多少不一样装共有多少不一样装 法法.解解:第一步从第一步从5 5个球中选出个球中选出2 2个组成复合元共个组成复合元共 有有_种方法种方法.再把再把5 5个元素个元素(包含一个复合包含一个复合 元素元素)装入装入4 4个不一样盒内有个不一样盒内有_种方法种方法.依据分步计数原理装球方法共有依据分步计数原理装球方法共有_处理排列组合混合问题处理排列组合混合问题,先选后排是最基本先选后排是最基本指导思想指导思想.第14页文档仅供参考,如有不当之处,请联系改正。练习题6某种产品有某种产品有4只次品和只次品和6只正品,每只均不只正品,每只均不同且可区分,今每
14、次取出一只测试,直到同且可区分,今每次取出一只测试,直到4只次品全部测出为止,则最终一只次品恰只次品全部测出为止,则最终一只次品恰好在第五次测试中被发觉不一样情况有多少好在第五次测试中被发觉不一样情况有多少种?种?第15页文档仅供参考,如有不当之处,请联系改正。七.相同元素分配问题隔板策略例例7.有有1010个三好学生名额,分给个三好学生名额,分给7 7个班,每个班,每班最少一个班最少一个,有多少种分配方案?有多少种分配方案?解:因为解:因为10个名额没有差异,把它们排成个名额没有差异,把它们排成一排。相邻名额之间形成个空隙。一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,在个空档中
15、选个位置插个隔板,可把名额分成份,对应地分给个可把名额分成份,对应地分给个班级,每一个插板方法对应一个分法班级,每一个插板方法对应一个分法共有共有_种分法。种分法。一班二班三班四班五班六班七班将将n n个相同元素分成个相同元素分成m m份(份(n n,m m为正整数)为正整数),每份最少一个元素每份最少一个元素,能够用能够用m-1m-1块隔板,块隔板,插入插入n n个元素排成一排个元素排成一排n-1n-1个空隙中,全个空隙中,全部分法数为部分法数为第16页文档仅供参考,如有不当之处,请联系改正。练习题7 有编号为1、2、33个盒子和10个相同小球,现把这10个小球全部装入3个盒子中,使得每个盒
16、子所装球数大于盒子编号数,这种装法共有多少种?第17页文档仅供参考,如有不当之处,请联系改正。八八.正难则反间接法正难则反间接法例8.四面体顶点和各棱中点共四面体顶点和各棱中点共10个点,个点,从中取从中取4个不共面点,不一样取法有个不共面点,不一样取法有多少种?多少种?取出取出4点不共面情形复杂,故采取间接法。点不共面情形复杂,故采取间接法。取出取出4点共面有三类:点共面有三类:(1)过四面体一个面有)过四面体一个面有 种;种;(2)过四面体一条棱上三个点和对棱)过四面体一条棱上三个点和对棱 中点平面有中点平面有6种;种;(3)过四面体四条棱中点且与另两条棱平过四面体四条棱中点且与另两条棱平
17、 行平面有行平面有3种;种;故取故取4个不共面点有个不共面点有第18页文档仅供参考,如有不当之处,请联系改正。以一个正方体顶点为顶点,能组以一个正方体顶点为顶点,能组成多少个不一样四面体?成多少个不一样四面体?练习8第19页文档仅供参考,如有不当之处,请联系改正。解排列组合题惯用方法6.排列组合混合题排列组合混合题先选后排法先选后排法1.特特殊殊元元素素优优先先考考虑虑2.不不相相邻邻问问题题插插 空空法法3.相相邻邻问问题题捆捆绑绑法法4.定定序序问问题题缩缩倍倍法法5.多多排排问问题题直直排排法法7.相同元素分配问题相同元素分配问题隔板法隔板法8 8.正难则反正难则反间接法间接法第20页文
18、档仅供参考,如有不当之处,请联系改正。练习1.(1)6本不一样书分给5名同学每 人一本,有多少种不一样分法?(2)5本相同书分给6名同学每人至 多一本,有多少种不一样分法?(3)6本不一样书全部分给5名 同学每人最少一本,有多 少种不一样分法?1.分配问题捆绑法 第2课时 排列组合综合应用第21页文档仅供参考,如有不当之处,请联系改正。练习1(5)6本不一样书分给甲、乙、丙3名同学 每人两本,有多少种不一样分法?(4)6本不一样书分给3名同学,甲1本、乙2 本、丙3本,有多少种不一样分法?分配问题捆绑法第22页文档仅供参考,如有不当之处,请联系改正。练习1(6)8本不一样书分给3名同学,其中1
19、名同 学2本、另两人3本,有多少种不一样分法?分配问题第23页文档仅供参考,如有不当之处,请联系改正。练习1(7)7名志愿者中安排6人在周六、周日两天参加社会公益活动,若天天安排3人,者有多少种不一样安排方法?分配问题第24页文档仅供参考,如有不当之处,请联系改正。练习1:(8)将5名实习教师分配到高一年级3个班实习,每个班最少1名,最多2名,则不一样分配方案有多少?分配问题第25页文档仅供参考,如有不当之处,请联系改正。练习2:(1)7个相同小球,任意放入4个不一样盒子中,共有多少种不一样方法?分配问题解:相当于将7个小球用3块隔板分成4份隔板法第26页文档仅供参考,如有不当之处,请联系改正
20、。练习2:(2)7个相同小球,任意放入4个不一样盒子中,每个盒子最少有1个小球不一样放法有多少种?分配问题解:将7个小球用3块隔板分成4份但盒子又不能空隔板法第27页文档仅供参考,如有不当之处,请联系改正。练习3:四面体一个顶点是A,从其它顶点和各棱中点中取3个点,使他们和点A在同一个平面上,则共有多少种不一样取法?2.组图形问题第28页文档仅供参考,如有不当之处,请联系改正。练习4:用正方体8个顶点共能够组成多少个不一样四面体?2.组图形问题第29页文档仅供参考,如有不当之处,请联系改正。练习5:10双不相同鞋子混装在一只口袋中,从中任取4只,试求符合以下各种情形方法数?先成双后成单(1)4
21、只鞋子恰成两双;(2)4只鞋子没有成双;(3)4只鞋子恰有2只成双;第30页文档仅供参考,如有不当之处,请联系改正。练习6:8名外交工作者,其中3人只会英语,2人只会日语,3人既会英语又会日语,现从则8人中选3个会英语,3个会日语人去完成一项任务,有多少种不一样选法?3.选人问题第31页文档仅供参考,如有不当之处,请联系改正。例10:给下面5个行政区域涂色,要求相邻区域不一样色,现有4种颜色可供选择,问共有多少种不一样涂色方案?4.涂色问题23154练习7:用4种颜色给下面5个行政区域涂色,要求相邻区域不一样色,问共有多少种不一样涂色方案?第32页文档仅供参考,如有不当之处,请联系改正。练习8:6本不一样书分给甲、乙、丙三人,每人最少一本,有多少种不一样分法?5.综合问题第33页文档仅供参考,如有不当之处,请联系改正。练习9:从5男3女中选5人担任5门不一样学科课代表,求符合以下条件不一样选法?5综合问题(1)有女生担人数必须少于男生;(2)男生只能担任数学化学物理课代表;第34页文档仅供参考,如有不当之处,请联系改正。练习10:3张卡片正反面分别写着数字0与1、3与4、5与6,将三张卡片并排组成三位数,共能够组成多少个不一样三位数?5综合问题第35页
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100