ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:1.38MB ,
资源ID:4074789      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4074789.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学总结:基本初等函数.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学总结:基本初等函数.doc

1、 高中数学知识点总结 第二章 基本初等函数(Ⅰ) 〖2.1〗指数函数 【2.1.1】指数与指数幂的运算 (1)根式的概念 ①如果,且,那么叫做的次方根.当是奇数时,的次方根用符号表示;当是偶数时,正数的正的次方根用符号表示,负的次方根用符号表示;0的次方根是0;负数没有次方根. ②式子叫做根式,这里叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,. ③根式的性质:;当为奇数时,;当为偶数时, . (2)分数指数幂的概念 ①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0. ②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义. 注意口

2、诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质 ① ② ③ 【2.1.2】指数函数及其性质 (4)指数函数 函数名称 指数函数 定义 0 1 0 1 函数且叫做指数函数 图象 定义域 值域 过定点 图象过定点,即当时,. 奇偶性 非奇非偶 单调性 在上是增函数 在上是减函数 函数值的 变化情况 变化对 图象的影响 在第一象限内,越大图象越高;在第二象限内,越大图象越低. 〖2.2〗对数函数 【2.2.1】对数与对数运算 (1) 对数的

3、定义 ①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:. (2)几个重要的对数恒等式 ,,. (3)常用对数与自然对数 常用对数:,即;自然对数:,即(其中…). (4)对数的运算性质 如果,那么 ①加法: ②减法: ③数乘: ④ ⑤ ⑥换底公式: 【2.2.2】对数函数及其性质 (5)对数函数 函数 名称 对数函数 定义 函数且叫做对数函数 图象 0 1 0 1 定义域 值域 过定点 图

4、象过定点,即当时,. 奇偶性 非奇非偶 单调性 在上是增函数 在上是减函数 函数值的 变化情况 变化对 图象的影响 在第一象限内,越大图象越靠低;在第四象限内,越大图象越靠高. (6)反函数的概念 设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成. (7)反函数的求法 ①确定反函数的定义域,即原函数的值域;②从原函数式中反解出; ③将改写成,并注明反函数的定义域. (8)反函数的性质 ①原函数与反函数的图象关于直线对称

5、. ②函数的定义域、值域分别是其反函数的值域、定义域. ③若在原函数的图象上,则在反函数的图象上. ④一般地,函数要有反函数则它必须为单调函数. 〖2.3〗幂函数 (1)幂函数的定义 一般地,函数叫做幂函数,其中为自变量,是常数. (2)幂函数的图象 (3)幂函数的性质 ①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点

6、所有的幂函数在都有定义,并且图象都通过点. ③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴. ④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数. ⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方. 〖补充知识〗二次函数 (1)二次函数解析式的三种形式 ①一般式:②顶点式:③两根式:(2)求二次函数解析式的

7、方法 ①已知三个点坐标时,宜用一般式. ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便. (3)二次函数图象的性质 ①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是. ②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,. ③二次函数当时,图象与轴有两个交点. (4)一元二次方程根的分布 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和

8、根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向: ②对称轴位置: ③判别式: ④端点函数值符号. ①k<x1≤x2 ②x1≤x2<k ③x1<k<x2 af(k)<0 ④k1<x1≤x2<k2 ⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2 f(k1)f(k2)0,并同时考虑f(

9、k1)=0或f(k2)=0这两种情况是否也符合 ⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出. (5)二次函数在闭区间上的最值 设在区间上的最大值为,最小值为,令. (Ⅰ)当时(开口向上) ①若,则 ②若,则 ③若,则 x y 0 > a O a b x 2 - = p q f(p) f(q) x y 0 > a O a b x 2 - = p q f(p) f(q) x y 0 > a O a b x 2 - = p q

10、 f(p) f(q) x y 0 > a O a b x 2 - = p q f(p) f(q) ①若,则 ②,则 x y 0 > a O a b x 2 - = p q f(p) f(q) (Ⅱ)当时(开口向下) ①若,则 ②若,则 ③若,则 x y 0 < a O a b x 2 - = p q f(p) f(q) x y 0 < a O a b x 2 - = p q f(p) f(q) x y 0 < a O a b x 2 - = p q f(p) f(q) ①若,则 ②,则. x y 0 < a O a b x 2 - = p q f(p) f(q) x y 0 < a O a b x 2 - = p q f(p) f(q)

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服