ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:297.16KB ,
资源ID:4074720      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4074720.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(高中数学圆锥曲线基本知识与典型例题.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学圆锥曲线基本知识与典型例题.doc

1、 高中数学圆锥曲线基本知识与典型例题 第一部分:椭圆 1. 椭圆的概念 在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数: (1)若a>c,则集合P为椭圆; (2)若a=c,则集合P为线段; (3)若ab>0) +=1(a>b>0) 图形 性 质 范围 -a≤x≤a -b≤y

2、≤b -b≤x≤b -a≤y≤a 对称性 对称轴:坐标轴  对称中心:原点 顶点 A1(-a,0),A2(a,0) B1(0,-b),B2(0,b) A1(0,-a),A2(0,a) B1(-b,0),B2(b,0) 轴 长轴A1A2的长为2a;短轴B1B2的长为2b 焦距 |F1F2|=2c 离心率 e=∈(0,1) a,b,c的关系 c2=a2-b2 典型例题 例1.F1,F2是定点,且|F1F2|=6,动点M满足|MF1|+|MF2|=6,则M点的轨迹方程是( ) (A)椭圆 (B)直线

3、 (C)圆 (D)线段 例2. 已知的周长是16,,B, 则动点的轨迹方程是( ) (A) (B) (C) (D) 例3. 若F(c,0)是椭圆的右焦点,F与椭圆上点的距离的最大值为M,最小值为m,则椭圆上与F点的距离等于的点的坐标是( ) (A)(c,) (C)(0,±b) (D)不存在 例4. 设F1(-c,0)、F2(c,0)是椭圆+=1(a>b>0)的两个焦点,P是以F1F2为直径的圆与椭圆的一个交点,若∠PF1F2=5∠PF2F1,则椭圆的离心率为( ) (A) (B)

4、 (C) (D) 例5 P点在椭圆上,F1、F2是两个焦点,若,则P点的坐标是 . 例6.写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为,,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为,,且短轴是长轴的; ____. (4)离心率为,经过点(2,0); . 例7 是椭圆的左、右焦点,点在椭圆上运动,则的最大值是 .

5、 第二部分:双曲线 1. 双曲线的概念 平面内动点P与两个定点F1、F2(|F1F2|=2c>0)的距离之差的绝对值为常数2a (2a<2c),则点P的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距. 集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a、c为常数且a>0,c>0: (1)当ac时,P点不存在. 2. 双曲线的标准方程和几何性质 标准方程 -=1 (a>0,b>0) -=1(a>0,b>0) 图形 性 质 范围

6、 x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性 对称轴:坐标轴 对称中心:原点 顶点 A1(-a,0),A2(a,0) A1(0,-a),A2(0,a) 渐近线 y=±x y=±x 离心率 e=,e∈(1,+∞),其中c= 实虚轴 线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的半实轴长,b叫做双曲线的半虚轴长 a、b、c 的关系 c2=a2+b2 (c>a>0,c>b>0) 典型例题 例8.命题甲:动点P到两定点A、B的距离之差的绝对值等于2a(

7、a>0);命题乙: 点P的轨迹是双曲线。则命题甲是命题乙的( ) (A) 充要条件 (B) 必要不充分条件 (C) 充分不必要条件 (D) 不充分也不必要条件 例9. 过点(2,-2)且与双曲线有相同渐近线的双曲线的方程是( ) (A) (B) (C) (D) 例10. 双曲线的两焦点为在双曲线上,且满足,则的面积为( ) 例11. 设的顶点,,且,则第三个顶点C的轨迹方程是________. 例12. 连结双曲线与(a>0,b>0)的四

8、个顶点的四边形面积为,连结四个焦点的四边形的面积为,则的最大值是________. 例13.根据下列条件,求双曲线方程: ⑴与双曲线有共同渐近线,且过点(-3,); ⑵与双曲线有公共焦点,且过点(,2). 例14 设双曲线上两点A、B,AB中点M(1,2) ⑴求直线AB方程; ⑵如果线段AB的垂直平分线与双曲线交于C、D两点,那么A、B、C、D是否共圆,为什么? 第三部分:抛物线 1. 抛物线的概念 平面内与一个定点F和一条定直线l(F∉l)的距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线. 2.

9、抛物线的标准方程与几何性质 标准 方程 y2=2px(p>0) y2=-2px(p>0) x2=2py(p>0) x2=-2py(p>0) p的几何意义:焦点F到准线l的距离 图形 顶点 O(0,0) 对称轴 y=0 x=0 焦点 F F F F 离心率 e=1 准线方程 x=- x= y=- y= 范围 x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R 开口方向 向右 向左 向上 向下 典型例题 例15. 顶点在原点,焦点是的抛物线方程是(

10、 ) (A)x2=8y (B)x2= -8y (C)y2=8x (D)y2= -8x 例16. 抛物线上的一点到焦点的距离为1,则点的纵坐标是( ) (A) (B) (C) (D)0 例17.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有( ) (A)4条 (B)3条 (C)2条 (D)1条 例18. 过抛物线(a>0)的焦点F作一直线交抛物线于P、Q两点,若

11、线段PF与FQ的长分别为p、q,则等于( ) (A)2a (B) (C) (D) 例19. 若点A的坐标为(3,2),F为抛物线y2=2x的焦点,点P在抛物线上移动,为使|PA|+|PF|取最小值,P点的坐标为( ) (A)(3,3) (B)(2,2) (C)(,1) (D)(0,0) 例20. 动圆M过点F(0,2)且与直线y=-2相切,则圆心M的轨迹方程是 . 例21. 过抛物线y2=2px的焦点的一条直线和抛物线交于

12、两点,设这两点的纵坐标为y1、y2,则y1y2=_________. 例22. 以抛物线的焦点为圆心,通径长为半径的圆的方程是_____________. 例23. 过点(-1,0)的直线l与抛物线y2=6x有公共点,则直线l的倾斜角的范围是 . 例题答案 例1. D 例2. B 例3. C.例5. B.例7. (3,4) 或(-3, 4) 例8. (1)或; (2) ;(3)或; (4) 或.例9. ≤ 例11. B 例13. D 例16. A例17. 例1

13、8. 例19.⑴;⑵ 例20.⑴直线AB:y=x+1 ⑵设A、B、C、D共圆于⊙OM,因AB为弦,故M在AB垂直平分线即CD上;又CD为弦,故圆心M为CD中点。因此只需证CD中点M满足|MA|=|MB|=|MC|=|MD| 由得:A(-1,0),B(3,4)又CD方程:y=-x+3 由得:x2+6x-11=0设C(x3,y3),D(x4,y4),CD中点M(x0,y0) 则∴ M(-3,6) ∴ |MC|=|MD|=|CD|=又|MA|=|MB|=∴ |MA|=|MB|=|MC|=|MD| ∴ A、B、C、D在以CD中点,M(-3,6)为圆心,为半径的圆上 例21. B() 例22. B 例23. B(过P可作抛物线的切线两条,还有一条与x轴平行的直线也满足要求。) 例24. C作为选择题可采用特殊值法,取过焦点,且垂直于对称轴的直线与抛物线相交所形成线段分别为p,q, 则p=q=|FK|, 例25. 解析:运用抛物线的准线性质.答案:B 例26. x2=8y 例27. -p2 例28. 例29.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服