ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:210.71KB ,
资源ID:4072618      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4072618.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【自信****多点】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【自信****多点】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(修正Kawahara方程空间解析半径的下界.pdf)为本站上传会员【自信****多点】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

修正Kawahara方程空间解析半径的下界.pdf

1、应用数学MATHEMATICA APPLICATA2024,37(2):530-539Lower Bounds on the Radius of SpatialAnalyticity for the Modified KawaharaEquationGUO Yantao(郭延涛),WANG Huichao(王会超)(School of Science,Xuchang University,Xuchang 461000,China)Abstract:We consider the Cauchy problem for the modified Kawahara equation with acu

2、bic nonlinear term in an analytic Gevrey space.Utilizing linear and trilinear estimates inanalytic Bourgain-Gevrey space,we establish the local well-posedness in Gevrey space G,sand show that the radius of spatial analyticity persists during the lifespan.Finally,usingan approximate conservation law,

3、we extend this to a global result in such a way that theradius of analyticity of solutions is uniformly bounded,that the uniform radius of spatialanalyticity of solutions at later time t can decay no faster than 1/|t|as t .Key words:The modified Kawahara equation;Radius of spatial analyticity;Gevrey

4、spaceCLC Number:O175.2AMS(2010)Subject Classification:35A20;35Q53Document code:AArticle ID:1001-9847(2024)02-0530-101.IntroductionIn this paper we consider the Cauchy problem for the modified Kawahara equation onreal linetu+5xu+3xu+xu+x(u3)=0,x,t R,u(0,x)=u0(x),(1.1)where =0.This equation was also c

5、alled fifth-order KdV type equation,and it can modela one-dimensional propagation of small amplitude long waves in various problems of plasmaphysics.13Recently,there is a growing interest in the well posedness of these types of partial differ-ential equations in analytic(or Gevrey)spaces G,s(R).For

6、any 0,G,s(R)denotes theBanach space endowed with the norm f G,s=e|sf()L2(R),here =1+|andf denotes the spatial Fourier transform of f.For =0,the Gevrey space coincides with the standard Sobolev space Hs(R).TheCauchy problem for the Kawahara equation with the quadratic nonlinear term x(u2)wasReceived

7、date:2023-04-25Foundation item:Supported by the Program for the Young Yeachers of Henan Province(2020G-GJS210),Key Scientific Research Projects of Henan Province(22B110014,23A110021)and the Programfor Innovative Research Team of Henan Province(23IRTSTHN018)Biography:GUO Yantao,male,Han,Henan,associa

8、te professor,major in partial differential equation.No.2GUO Yantao,et al.:Lower Bounds on the Radius of Spatial Analyticity for the MKE531studied in many works.CUI,DENG and TAO4showed that the equation has a global solu-tion when s=0.Later,many authors extended the results to the negative index spac

9、es.56It should be noted that under the weaker regularity condition on initial data,CHEN andGUO7proved the global well-posedness for s 7/4 by the I-method.Kato89obtainedthe locally well-posedness for s 2 and the global solution for s 38/21.By the Fourierrestriction norm,JIA and HUO10considered the Ca

10、uchy problem for the modified Kawa-hara equation with cubic nonlinear term x(u3),and obtained the local well-posedness withs 1/4.In this paper,we study the well-posedness of(1.1)in Gevrey space G,s(R)motivated bythe earlier works on this issue.The key property of the Gevrey space is that every funct

11、ion inspace G,swith 0 has an analytic extension to the strip S=x+iy:x,y R,|y|0,s R.Then the following are equivalent:(i)f G,s;(ii)f is the restriction to the real line of a function F which is holomorphic in the stripS=x+iy:x,y R,|y|and satisfiessup|y|F(x+iy)Hsx 0,and establish an almost conservatio

12、n law in G,s(R),then to use an iterative process ontime 0,T,with T arbitrarily large.This method was widely discussed for the Korteweg-deVries equation.Bona and Gruji c13proved that the radius(t)for the KdV equation decays exponential-ly et2as t .This was improved greatly by Bona,Gruji c and Kalisch

13、14to a polynomialdecay rate of|t|12.Selberg and da Silva16established a key inequality and an iterativeprocess to extend the solution up to any time and obtained(t)c|t|4/3+,Tesfahun17removed the exponent.Later,HUANG and WANG18proved a higher order almost conser-vation law in Gevrey spaces by the mod

14、ified I-method.Finally they improved the decay rateup to|t|1/4.For other related works in the radius of analyticity for other partial differentialequations,we refer to 19-21 and references therein.The Kawahara equation is a fifth-order KdV type equation.Ahn,Kim and Seo20dis-cussed lower bounds on th

15、e radius of spatial analyticity of solutions to the Kawahara equation532MATHEMATICA APPLICATA2024with the quadratic nonlinear term,and the uniform radius of spatial analyticity of solutionsat later time t can decay no faster than|t|1.In spite of these many works,we discuss themodified Kawahara equat

16、ion with the cubic nonlinear term.Now we state our first mainresult about the local well-posedness in analytic Gevrey spaces for the modified Kawaharaequation.Theorem 1.1If 0 and s 1/4,then for any u0 G,s(R),there exists a=(u0G,s)0 and a unique solution u(t)of the Cauchy problem(1.1)on the timeinter

17、val,such that u(t)X,s,b C(,G,s(R)with=C(1+u02G,s)afor some constants C 0 and a 5 depending only on s.Moreover the local solution u(t)satisfies the boundsu(t)X,s,b Cu0G,sand sup|t|u(t)G,s Cu0G,s.The next main result deals with the evolution of the radius of analyticity in time,andan algebraic lower b

18、ound on the radius of analyticity(t)as t tends to infinity.Theorem 1.2If 0 0 and s 1/4 and u0 G0,s(R),then the solution u(t)obtained in Theorem 1.1 extends globally in time,and for any T 0,and we haveu(t)C(T,T,G(T),s(R),where(T)=min0,CT1,C is a constant depending on u0,0,s.The paper is structured as

19、 follows.In Section 2,we introduce some function spaces suchas Bourgain and Bourgain-Gevrey spaces,and some basic properties that will be used in latersections.In Section 3,we present trilinear estimates in Bourgain-Gevrey spaces,solve theCauchy problem with data in G,s,and derive a formula for the

20、lifespan of the local solutiondepending on the norm of the initial data.In Section 4,we prove an almost conservation lawby transforming the equation for u(t)to a similar equation for v(t).=e|Dx|u(t)with an errorterm in the right-hand side,and estimate the error terms via trilinear estimate yields th

21、edesired the almost conservation law.Finally,in Section 5,using this almost conservation law,we derive the lower bound radius of spatial analyticity and complete the proof of Theorem1.2.2.PreliminariesIn this section,we introduce some function spaces and their basic properties which willbe used in l

22、ater section for the proof of theorems.Throughout this paper,the letter C standsfor a positive constant which may be different at each occurrence,and we denote A.B andA B to mean A CB and B.A.B,respectively.Recall that for all f S,the Fourier transformf is defined by(Ff)()=f=Reixf(x)dx.The inverse F

23、ourier transform of any g is given by(F1g)(x)=g=12Reixg()d.From the definition of the Gevrey space,we can get that the Gevrey space satisfies thefollowing important embedding propertyG,s,G,sfor all 0 1/2.Then X,s,b,C(R,G,s)andsuptRf(t)G,s Cf(t)X,s,b,where C is a constant depending only on b.Lemma 2.

24、210Let 0,s R,1/2 b b 0.ThenfX,s,b Cb,bbbfX,s,b,where Cb,bis a constant depending only on b and b.Lemma 2.310Let 0,s R,1/2 b 0.Then for any time intervalI 0,IfX,s,b CfX,s,b,where I(t)is the characteristic function of I,and C is a constant depending only on b.3.Local Well-posedness in Bourgain-Gevrey

25、SpaceIn this section,we establish the local well-posedness based on the contraction mappingprinciple in space X,s,b,we obtain Theroem 1.1 which is the local well-posedness in G,swith a lifespan 0,implies the radius of analyticity remains strictly positive in a short timeinterval 0 t .Let the linear

26、operator associated with the corresponding linear equation of(1.1)beW(t)=F1eit(53+)F,then,by Duhamels principle,the solution of(1.1)can be written asu(t)=W(t)u0+t0W(t t)F(t,x)dt,(3.1)where F(t,x)=x(u3).Then the following linear X,s,benergy estimate follows directlyfrom 10,20 or also 21.534MATHEMATIC

27、A APPLICATA2024Lemma 3.1Let s R,1/2 b 1 and 0 1.ThenW(t)u0X,s,b Cu0G,s,t0W(t t)F(t,x)dtX,s,b CFX,s,b1.We present a trilinear estimate in Bourgain spaces proved in 10 and use the transformv(t).=e|Dx|u(t)to obtain a trilinear estimate in Bourgain-Gevrey spaces which plays a rolein obtaining the local

28、well-posedness.With the aid of this trilinear estimate we will deducean estimate which is another useful tool particularly in obtaining the almost conservation lawin the next section.Lemma 3.2If s 1/4,1/2 b 1/2.Thenx(u1u2u3)Xs,b1 Cu1Xs,bu2Xs,bu3Xs,b.(3.2)Lemma 3.3Let s,b,bbe as in Lemma 3.2.Then for

29、 all 0,we havex(u1u2u3)X,s,b1 Cu1X,s,bu1X,s,bu1X,s,b.(3.3)ProofLet b vj=e|b uj(,)then(3.3)is reduced toIL2,.3j=1vjXs,b,(3.4)whereI=is p()b1e(|3j=1|j|)3j=1b vj(j,j)dd,here we used the notationwdd=3j=1j=,3j=1j=w3j=1djdjfor the function w=w(j,j).By the triangle inequality,we have|3j=1j,which implies e(

30、|3j=1|j|)1,andhenceIL2,.x3j=1vjXs,b.(3.5)Thus(3.4)can be reduced to showingx(v1v2v3)Xs,b1 Cv1Xs,bv2Xs,bv3Xs,b.(3.6)This is the conclusion in Lemma 3.2.Proof of Theorem 1.1Consider the setB=u:u(t)X,s,b 2Cu0G,s,define an operator on B as followsu(t)=W(t)u0 t0W(t t)x(u3(t)dt.(3.7)On the one hand,if u(t

31、)B,then using Lemmas 2.2,3.1 and 3.3,we findu(t)X,s,bW(t)u0X,s,b+t0W(t t)x(u3(t)dtX,s,bCu0G,s+Cx(u3(t)X,s,b1No.2GUO Yantao,et al.:Lower Bounds on the Radius of Spatial Analyticity for the MKE535Cu0G,s+Cbbx(u3(t)X,s,b1Cu0G,s+Cbbu(t)3X,s,b,(3.8)with 1/2 b b 5 since 1/2 b b 7/10.Now assume that u and v

32、 are solutions of the Cauchy problem(1.1)for initial data u0and v0respectively.Then similarly as above,with the same choice of and for any suchthat 0 ,we haveu vX,s,b u0 v0G,s+12u vX,s,b,which proves the continuous dependence of the solution on the initial data.4.Almost Conservation LawWe know that

33、the solution of the modified Kawahara equation has a conservation law inL2space,i.e.,u(t)L2=u0L2for all t 0,but in Gevrey space G,0,given u0 G,0,by Theorem 1.1 we only have a solution u(t)G,0for 0 t satisfying the boundsup|t|u(t)G,0 Cu0G,0.This local estimate is not sufficient to derive our conclusi

34、on,so we shall improve this localestimate to the following almost conservation law for any large time T0,that is,sup|t|T0u(t)G,0 u0G,0+E(0),536MATHEMATICA APPLICATA2024where E(0)satisfies the bound E(0)Cu04G,0,the quantity E(0)can be consideredan error term since in the limit as 0,we have E(0)0.Lemm

35、a 4.12223Let min,med,maxdenote the minimum,medium,maximum of|1|,|2|,|3|.Then for 0,1 we have the estimatee3j=1|j|e|3j=1j|12mede3j=1|j|.Lemma 4.2Let f=x(e|Dx|u)3 e|Dx|u3.Given 0 1,there exists 1/2 b 1/2 and 0 1,and be as in Theorem 1.1.Then thereexists a C 0 such that for any 0 and any solution u X,0

36、,bof the Cauchy problem(1.1)on the time interval 0,we have the estimatesupt0,u(t)2G,0 u02G,0+Cu(t)4X,0,b.(4.2)Moreover,we havesupt0,u(t)2G,0 u02G,0+Cu04G,0.(4.3)ProofLet v(t,x)=e|Dx|u(t,x)which is real-valued since the multiplier e|Dx|is evenand u is real-valued.Applying e|Dx|to(1.1),we obtaintv+5xv

37、+3xv+xv+x(v3)=f,(4.4)where f=x(e|Dx|u)3 e|Dx|u3.Multiplying(4.4)by v and integrating in space,we have12Rv2dt+2R(2xv)2x2R(xv)2x+2R(v2)xdx+2Rv4dx=Rfvdx,(4.5)No.2GUO Yantao,et al.:Lower Bounds on the Radius of Spatial Analyticity for the MKE537which implies12Rv2dt=Rfvdx.(4.6)Now integrating in time ove

38、r the interval 0,we obtainu()2G,0=Rv2(,x)dx=u02G,0+2RR0,vfdxdt.(4.7)We now use Plancherel Theorem and Lemma 2.3,Lemma 4.2 to estimate the integral on theright-hand side of(4.7)as|RR0,vfdxdt|0,vX0,1b0,fX0,b1 vX,0,1bfX,0,b1CuX,0,1bfX,0,b Cu4X,0,b.(4.8)Inequality(4.3)follows from Theorem 1.1 and(4.2)di

39、rectly.The proof is complete.5.Proof of Theorem 1.2ProofBy invariance of the Kawahara equation under the reflection(t,x)(t,x),we may restrict to positive times.By the embedding property of the Gevrey spaceG,s,G,sholds for all 0 0 depending on u0G0,0and 0.Now fix T arbitrarily large,it suffices to sh

40、owsupt0,Tu(t)2G,0 2u02G,0,(5.3)for satisfying(5.2)which in turn implies u(t)G(t),0as desire.First,choose n Z+such that n T (n+1),using induction,we shall show thatfor any k 1,2,n+1 thatsupt0,ku(t)2G,0 u02G,0+kC22u04G,0,(5.4)andsupt0,ku(t)2G,0 2u02G,0,(5.5)provided satisfying 0,and2TC22u02G0,0 1.(5.6

41、)Indeed,for k=1,from(5.1),we havesupt0,u(t)2G,0 u02G,0+Cu04G,0 2u02G,0,(5.7)538MATHEMATICA APPLICATA2024where we use the fact that u02G,0 u02G0,0and Cu04G0,0 1 which follows from(5.6).Now assume(5.4)-(5.5)hold for some k 1,2,n.Applying(5.1),(5.4)-(5.5),wehavesuptk,(k+1)u(t)2G,0u(k)2G,0+Cu(k)4G,0u(k)

42、2G,0+C22u04G0,0.(5.8)Combining this with the induction hypothesis(5.4)for k,we getsupt0,(k+1)u(t)2G,0 u02G,0+C(k+1)22u04G0,0,(5.9)which proves(5.4)for k+1.Since k+1 n+1 T/+1 2T/,from(5.6)we also getC(k+1)22u02G0,02TC22u02G0,0 1,which along with(5.9)we prove for k+1.Finally,the condition(5.6)is satis

43、fied for(t)=(C22u02G0,0)1/(1T)1/.Particularly choosing =1,we get(t)CT.The condition C in(t)CTmay be given as C=C22u0G0,0which depends only onu02G0,0.The general case s R.Recall the embedding property of the Gevrey space G,s,G,sfor all 0 and s,s R.For any s R,we use this embedding to getu0 G0,s,G0/2,

44、0.From the local well-posedness result,there is a =(u0G0/2,0)such thatu(t)G0/2,0,for 0 t .Similarly as in the case s=0,for T fixed greater than,we have u(t)G,0for t 0,Tand C/T,where C depends on u0G0/2,0and 0.Applying the embedding again,we concludeu(t)G,s,for t 0,T,where =/2.The proof is complete.R

45、eferences:1 KAWAHARA T.Oscillatory solitary waves in dispersive mediaJ.J.Phys.Soc.Japan.,1972,33:260-264.2 BONA J L,SMITH R S.A model for the two-ways propagation of water waves in a channelJ.Math.Proc.Cambridge Philos.Soc.,1976,79:167-182.3 KICHENASSAMY S,OLVER P J.Existence and nonexistence of sol

46、itary wave solutions to higher-order model evolution equationsJ.SIAM J.Math.Anal.,1992,23:1141-1166.4 CUI S B,DENG D G,TAO S P.Global existence of solutions for the Cauchy problem of the Kawaharaequation with L2initial dataJ.Acta Math.Sin.,2006,22:1457-1466.5 WANG H,CUI S B,DENG D G.Global existence

47、 of solutions for the Kawahara equation in Sobolevspaces of negative indicesJ.Acta Math.Sin.,2007,23:1435-1446.No.2GUO Yantao,et al.:Lower Bounds on the Radius of Spatial Analyticity for the MKE5396 CHEN W,LI J,MIAI C,WU J.Low regularity solutions of two fifth-order KdV type equationsJ.J.Anal.Math.,

48、2009,107:221-238.7 CHEN W,GUO Z.Global well-posedness and I method for the fifth order Korteweg-de Vries equa-tionJ.J.Anal.Math.,2011,114:121-156.8 KATO T.Local well-posedness for Kawahara equationJ.Adv.Differential Equations,2011,16:257-287.9 KATO T.Global well-posedness for the Kawahara equation w

49、ith low regularityJ.Commun.Pur.Appl.Anal.,2013,12(3):1321-1339.10 JIA Y L,HUO Z H.Well-posedness for the fifth-order shallow water equationsJ.J.Differ.Equ.,2009,246:2448-2467.11 KATZNELSON Y.An Introduction to Harmonic AnalysisM.Dover Publications,Inc.,New York,1976.12 KATO T,MASUDA K.Nonlinear evol

50、ution equations and analyticityJ.Ann.Henri Poincar e.,1986,3:455-467.13 BONA J L,GRUJIC Z.Spatial analyticity properties of nonlinear wavesJ.Math.Models MethodsAppl.Sci.,2003,13:345-360.14 BONA J L,GRUJIC Z,KALISCH H.Algebraic lower bounds for the uniform radius of spatialanalyticity for the general

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服