1、DOI:10.13931/ki.bjfuss.2023070财政支持视角下产业集聚对林业绿色全要素生产率的影响机制研究陈建成1,王卉菀1,侯 建2(1.北京林业大学经济管理学院;2.河南农业大学信息与管理科学学院)摘要:基于各地区统计年鉴中的面板数据,运用非期望产出超效率 SBM-Malmquist 指数模型测度中国 30 个省份20082019 年的林业绿色全要素生产率及异质性结构,并通过构建非线性动态面板门槛回归模型,从财政支持视角探析林业产业集聚对林业绿色全要素生产率的影响机制。研究发现:从总体上看,我国林业绿色全要素生产率呈缓慢增长趋势,但逐年波动明显且存在区域异质性。此外,在不同财政
2、支持水平下,林业产业集聚对林业绿色全要素生产率的影响呈现非线性特征,即较低的财政支持水平抑制了林业产业集聚对林业绿色全要素生产率提高的促进作用,而随着财政支持水平的提高并超过临界值,林业产业集聚可以更好地发挥正外部性进而促进林业绿色全要素生产率提高。研究结论为推进我国生态文明建设和实现林业现代化发展提供了新视角、新方案。关键词:林业绿色全要素生产率;产业集聚;财政支持;异质门槛效应中图分类号:F326 文献标志码:A 文章编号:1671-6116(2024)-01-0011-10The Influence Mechanism of Industrial Agglomeration on For
3、estry Green TotalFactor Productivity from the Perspective of Financial SupportChen Jiancheng1,Wang Huiyu1,Hou Jian2(1.School of Economics and Management,Beijing Forestry University,100083,P.R.China;2.College of Information and Management Science,Henan Agricultural University,Zhengzhou,450046,P.R.Chi
4、na)Abstract:Based on the panel data from the regional statistical yearbook,this paper uses the non-expectedoutput superefficiency SBM-Malmquist index model to measure the forest green total factor productivityand its heterogeneity structure in 30 provinces of China from 2008 to 2019.By constructing
5、a nonlineardynamic panel threshold regression model,the influence mechanism of forestry industry agglomeration onforestry green total factor productivity was analyzed from the perspective of financial support.The resultsshow that:overall,the green total factor productivity of Chinese forestry is in
6、a slow growth trend,but itfluctuates obviously year by year and there is regional heterogeneity.In addition,under different financialsupport levels,the effect of forestry industry agglomeration on forestry green total factor productivitypresents nonlinear characteristics,that is,lower financial supp
7、ort level inhibits the positive effect offorestry industry agglomeration on the improvement of forestry green total factor productivity.However,when the financial support level increases and exceeds the critical value,the positive externalities offorestry industry agglomeration can be better utilize
8、d to promote the improvement of forestry green totalfactor productivity.The paper provides a new perspective and a new plan for promoting ecologicalcivilization construction and realizing forestry modernization.收稿日期:2023-03-28第一作者:陈建成,博士,教授。主要研究方向:农林经济管理、绿色发展。Email:chenjc_地址:100083 北京林业大学经济管理学院。第 23
9、 卷 第 1 期北 京 林 业 大 学 学 报(社 会 科 学 版)Vol.23 No.12024 年 3 月Journal of Beijing Forestry University (Social Sciences)Mar.2024Key words:forestry green total factor productivity;industrial agglomeration;financial support;heterogeneous threshold effect中华人民共和国国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要强调,构建生态文明体系、促进经济社会全
10、面绿色发展是我国全面建成社会主义现代化强国的重要抓手。林业作为我国重要的基础性产业,一方面对促进经济与社会发展发挥重要作用,2023 年的全国林业和草原工作会议指出,2022 年全国林业产业总产值达 8.04 万亿元,在国内生产总值中的占比为 6.6%;另一方面林业独有的生态功能可以有效改善生态环境、缓解气候变化的不利影响,有助于“双碳”战略的实施1。在林业发展进入要素驱动增长的瓶颈时期,提高全要素生产率成为推动林业经济增长的重要途径2。随着高质量发展和绿色发展理念的提出,为了实现林业经济、社会和生态的协调发展,践行“绿水青山就是金山银山”理念,不仅需要加速林业经济增长方式从过度依赖传统生产要
11、素向依靠全要素生产率转变,提高我国林业发展质量和效率,还需要探寻集约化、生态化的生产方式,走“经济生态化、生态经济化”的现代林业发展道路。林业绿色全要素生产率将全要素生产率和生态环境相结合,考虑了资源约束和环境污染的影响,能够充分衡量林业资源投入利用率及林业绿色发展综合效率,推动实现林业现代化、建设美丽中国3。随着林业经济的发展,林业产业集聚特征逐渐显现。同时,2021 年中央一号文件提出创建现代林业产业示范区,以期在促进区域经济发展、加速产业集群形成等方面发挥重要作用。结合产业集聚的内涵,欧盟委员会将林业产业集聚定义为由林业企业与相关团体或部门有机融合发展而产生的经济集合4。由于产业集聚主要
12、以空间分布为特征,空间范围的临近有利于发挥知识技能溢出效应与规模效应对要素利用率提高的促进作用5。因此,深入分析林业产业集聚与林业绿色全要素生产率之间的作用机制,有助于实现林业现代化和绿色发展。与此同时,我国出台了一系列林业经济、生态、社会效益等方面的财政支持和资金补贴政策,这些措施为落实生态文明建设以实现林业高质量发展提供了资金保障。由此引发一些值得深思的研究议题:在我国财政支持程度存在区域差异的背景下,各地区的林业产业集聚影响林业绿色全要素生产率的机制是什么?如何在有限的财政支持水平下,通过产业集聚的方式来平衡林业产业经济和森林生态的双重属性,实现林业现代化和绿色发展?在上述战略背景下,本
13、文通过构建非线性动态面板门槛回归模型,从财政支持视角探析各地区林业产业集聚对林业绿色全要素生产率的影响效应,从“阈值差异”的角度分析林业产业集聚、财政支持和林业绿色全要素生产率之间的关系,探索产业集聚对我国林业绿色全要素生产率的深层次驱动机制,推动林业高质量发展和林业现代化建设的理论研究和实践探索。一、文献综述全要素生产率最初是指劳动、资本、能源等多种生产要素的产出效率6。基于 Robert 在经济增长理论中对“索洛余值”的描述,学者逐渐将全要素生产率看作资本和劳动之外的知识、技术等生产要素对产出增长作用的结果7-8。为实现林业高质量发展,学者们主要在全要素生产率的测度和林业全要素生产率的影响
14、因素等方面展开研究。全要素生产率的测度是林业全要素生产率分析的基础,主要运用柯布道格拉斯生产函数、数据包络分析模型和随机前沿生产函数模型等测算方法9-12。此外,学者研究认为,外商投资、国家财政支持、进出口贸易等因素均有助于林业全要素生产率的提高3,9-10。魏肖杰等5、王雅晖等13深入研究了林业产业集聚对林业全要素生产率的非线性影响。随着生态文明建设的不断推进,绿色作为新发展理念内容之一逐渐深入人心,林业绿色全要素生产率的重要价值受到了学界的高度重视。总体来看,学者们主要基于不同行业或地区,对工业、农业、制造业等领域的绿色全要素生产率展开研究和分析14,然而,针对林业方面的研究仍处于探索阶段
15、。沈伟航等15、郑宇梅等16分别研究了中国林产工业绿色全要素生产率和林业产业生态效率,但将污染物排放等变量当作投入变量进行测算的做法值得商榷。随后,刘涛等3将污染物排放作为非期望产出纳入投入产出模型,运用非期望产出超效率 SBM-Malmquist 指数模型测算了各地区的林业绿色全要素生产率及变动情况,并探究了林业灾害等自然因素和经济发展水平等社会因素对林业绿色全要素生产率的影响。谭少鹏17通过建立面板空间计量模型深入分析了产业发达程度、宏观经济发展水平、环境规制强度、城镇化水平和能源消费结构与林业绿色全要素生产率之间的相关关系。吕洁华等8基于地理学第一、第二定律探究林业绿色全要素生产率呈现的
16、发散 12北京林业大学学报(社会科学版)第 23 卷或收敛态势,认为林业绿色全要素生产率在短期内具有向好发展趋势,且存在空间溢出性。此外,宋美琼等18基于南方集体林区的产业现状,采用Tobit 模型研究了林业产业结构、经济发展水平、财政支持力度等因素对林业绿色全要素生产率的显著影响。产业集聚在区域及产业发展方面有重要作用,且较多研究表明,地理位置、市场和政府等因素对林业产业集聚的影响较为明显4。此外,学者们从不同视角对林业产业集聚效应展开研究。在林业产业高质量发展方面,侯建等1研究发现,产业集聚态势有助于促进林业产业高质量发展。在经济增长效应方面,汪浩2通过回归分析验证了林业产业集聚能通过正外
17、部性对经济增长产生促进作用;陈周光等19采用可行广义最小二乘法证实林业产业集聚对林业经济增长有非线性影响。在生产率效应方面,夏永红等20采用空间计量模型探讨了木材加工产业集聚水平对劳动生产率的直接效应和溢出效应;魏肖杰等5研究发现,林业产业集聚对林业全要素生产率的影响表现出非线性特征。在生态效应方面,郑宇梅等16研究发现,产业集聚对林业产业生态效率有正向作用。在调整产业结构方面,余亚亮等21指出,林业产业集聚有助于优化整合林业产业结构。目前关于产业集聚对林业绿色全要素生产率的影响机制的研究相对较少,但是以林业全要素生产率和生态减排效应为主要对象的研究为此提供了宝贵的理论基础。部分学者认为产业集
18、聚有利于全要素生产率和生态效率的提高,如韦玉琼等22通过空间计量模型实证检验得出,非木质林产品产业集聚能促进技术创新与知识溢出,进而改善生态效率。部分学者认为产业集聚会抑制全要素生产率和生态效率的提高,如李玉洁等23采用固定效应模型检验得出,产业协同集聚与资源的有限性不利于全要素生产率的提高。此外,有学者认为,在产业集聚的正、反两方面效应的作用下,产业集聚对全要素生产率和生态效率的影响可能是非线性的。魏肖杰等5采用动态空间计量模型研究发现,由于集聚效应与拥挤效应同时存在,林业产业集聚对林业全要素生产率的影响存在倒 U 型影响。王雅晖等13运用系统广义矩估计法研究发现,专业化集聚对林业全要素生产
19、率存在非线性影响。刘耀彬等24 从生态减排效应出发,采用空间面板杜宾模型和面板门槛回归模型,基于集群生命周期理论探究发现,产业集聚与生态减排效应的关系曲线呈倒型。此外,由于林业本身较高的自然风险和社会风险以及公益外部性等特点,及其在推进乡村振兴、缓解气候变化等方面的战略性地位,因此国家和政府需重视林业的高质量发展1。实证研究表明,大部分学者认为财政支持水平对林业全要素生产率有重要影响10,25。综上所述,本文将从以下角度对现有相关研究进行完善:第一,聚焦各省份林业产业集聚对林业绿色全要素生产率的影响。第二,依据现有研究建立林业绿色全要素生产率评价体系,在投入产出模型中考虑以污染物排放为指标的非
20、期望产出,丰富林业绿色全要素生产率的理论研究。第三,鉴于林业产业集聚对林业绿色全要素生产率可能存在非线性影响,本文考虑不同地区财政支持水平存在异质性,将财政支持纳入林业产业集聚驱动林业绿色全要素生产率的框架中,探索在生态文明建设期间发挥林业产业集聚正向效应以促进林业绿色全要素生产率提高的路径方法,拓展林业绿色全要素生产率影响机制研究的理论范畴。二、理论分析框架在产业集聚的正、反两方面效应的作用下,本文进一步考虑财政支持在产业集聚对林业绿色全要素生产率影响过程中的非线性门槛效应,如图 1所示。(一)林业产业集聚的拥挤效应林业产业集聚可能产生拥挤效应,从而阻碍林业绿色全要素生产率的提高。一方面,由
21、于林业基 林业产业集聚拥挤效应竞争效应知识外溢效应规模效应财政支持财政支持提高降低环保标准降低能源消耗加剧过度竞争林业绿色全要素生产率促进作用抑制作用正向效应 图 1 产业集聚对林业绿色全要素生产率的影响机制 第 1 期陈建成等:财政支持视角下产业集聚对林业绿色全要素生产率的影响机制研究13础设施、林业科研等投入具有公共产品属性,林业产业经营者难以承担全部成本10,集聚区较为丰富的资源要素促使生产投入主要是成本较低的传统生产要素,导致技术创新等要素的投入相对欠缺,难以发挥知识和技术的正外部性16;同时,资源的消耗得不到有效限制,使环境污染加剧23。另一方面,在林业产业集聚过程中,随着生产规模不
22、断扩大、外来企业不断加入,在没有财政支持等制度安排或特定政策干预的情况下,一定区域内有限的林业发展空间和资源可能导致企业之间过度竞争,为追求利润降低环保标准5。(二)林业产业集聚的正向效应林业产业集聚发挥正向效应有助于促进林业绿色全要素生产率提高。首先,林业生产经营者在空间上集聚有利于提升劳动专业化分工与协作,促进产业链上下游企业的协同合作,有效节约生产成本和交易成本、提高要素资源利用率,从而有助于产生一定的规模经济效应22。其次,林业产业集聚有助于企业间交流林业专业知识、技术和先进管理经验,促进知识与技能外溢5,加快林业经济增长方式向包括技术要素的全要素生产率转变;知识溢出效应进一步促进区域
23、创新,为林业产业集约化、绿色发展提供动力源泉24。最后,集聚区内的企业在空间上邻近容易形成竞争关系,适当的竞争有助于促使林业生产经营者提高生产效率和开展绿色创新,进而提升绿色全要素生产率14。(三)林业产业集聚的财政支持门槛效应财政支持是促进林业高质量发展的有效手段,在产业集聚对林业绿色全要素生产率的作用过程中存在影响。一方面,当财政支持处于较低水平时,技术创新等非传统投入要素的匮乏不利于集聚区知识和技术发挥正外部性作用16。此外,在缺乏合理的财政支持或特定政策干预的情况下,一定区域内有限的林业发展空间和资源可能导致拥挤效应的产生5,不利于林业绿色全要素生产率的提高。另一方面,合理的财政支持和
24、足够的资金保障有助于林业产业正向发展,促进积极的生产资源要素向林业聚集1。在国家财政支持下,集聚区林业生产基础设施不断完善、资源配置效率不断优化,促进林业生产经营者在空间上集聚并发挥规模效应13。同时,市场和政府的双重调节有利于集聚区企业良性竞争,从而促进林业绿色全要素生产率提高14。基于此,本文提出以下两个假设。假设 H1:林业产业集聚对林业绿色全要素生产率具有显著的财政支持门槛效应;假设 H2:不同财政支持水平下林业产业集聚对林业绿色全要素生产率的影响存在差异,并且财政支持水平的提高激发了林业产业集聚对林业绿色全要素生产率的正向影响。三、林业绿色全要素生产率测算(一)林业绿色全要素生产率测
25、算方法数据包络分析(Data Envelopment Analysis,简称 DEA)模型是测算绿色全要素生产率的基本方法。松弛变量度量(Slacks-based Measure,简称 SBM)模型则有效兼顾了投入产出变量的松弛问题26。Kaoru27提出的超效率 SBM 模型克服了多个决策单元同时有效时的比较问题28。林业生产是连续的动态变化过程,结合 Malmquist 指数可以体现效率的动态变化特征29。基于上述研究,本文借鉴刘涛等3、Lin 等11的测度方法,采用非期望产出超效率SBM-Malmquist 指数模型来测算林业绿色全要素生产率。首先,运用超效率 SBM 模型求解林业绿色全
26、要素生产率,模型定义如下所示。=min,s,s+1+1mmi=1sixtio11s1+s2s1r=1s+rytro+s2k=1skbtkos.t.xtioTt=1nj=1,j,otjxtijsii=1,2,m;ytroTt=1nj=1,j,otjytrj+s+rr=1,2,q;btkoTt=1nj=1,j,otjbtkjskk=1,2,h;tj,si,s+r,sk 0(1)式中,*为效率值,j为权重,s表示投入的松弛变量,s+表示产出的松弛变量,sr+、sk分别表示期望产出和非期望产出的松弛变量。xio表示第 o 个决策单位,yro表示第 o 个决策单位的期望产出,bko表示第o 个决策单位的
27、第 k 种非期望产出。i 代表投入变量的个数,其取值范围从 1 到 m;r 代表期望产出变量的个数,其取值范围从 1 到 q;k 代表非期望产出变量的个数,其取值范围从 1 到 h;t 代表时间。当*=1 时,s=sr+=sk,表示被评价决策单元有效;否则,表明效率值未达到生产前沿面,需要对投入产出变量进行一定调整。其次,结合 Malmquist 指数研究生产率的动态变化,构造林业生产部门 t 时期到 t+1 时期的生产率指数如下所示。14北京林业大学学报(社会科学版)第 23 卷M0(xt+1,yt+1,bt+1,xt,yt,bt)=Dt(xt+1,yt+1,bt+1)Dt(xt,yt,bt
28、)Dt+1(xt+1,yt+1,bt+1)Dt+1(xt,yt,bt)12(2)式中,xt+1、yt+1、bt+1、xt、yt、bt分别为各地区在 t+1时期和 t 时期的投入向量、期望产出向量和非期望产 出 向 量,Dt(xt+1,yt+1,bt+1)、Dt+1(xt+1,yt+1,bt+1)和 Dt(xt,yt,bt)和 Dt+1(xt,yt,bt)分别表示以 t+1 时期、t 时期为参照的关于 t 时期和 t+1 时期的距离函数。M0大于 1,代表 t+1 时期林业绿色全要素生产率较 t 时期有所提升;M0小于 1,代表 t+1 时期林业绿色全要素生产率较 t 时期有所降低。最后,在选取
29、超效率 SBM-Malmquist 指数模型的基础上构建测算林业绿色全要素生产率的投入产出指标。考虑指标选取的科学性及数据的可获得性,本文借鉴刘涛等3、谭少鹏17的研究得到测算林业绿色全要素生产率的指标体系。该指标体系以土地、能源、劳动力、资本为投入指标,分别用林业用地面积、地区林业能源消费总量、年末林业从业人数、林业固定资产投资存量来衡量,其中地区林业能源消费总量=地区能源消费总量 地区林业总产值/地区生产总值,林业固定资产投资存量用永续盘存法测算得到。林业期望产出包括经济产出和生态产出,经济产出用地区林业生产总值表示,生态产出用地区造林面积表示;非期望产出即环境污染物排放量,包括林产工业
30、SO2、废水、固体废弃物排放量,各地区林产工业环境污染物排放量=各地区工业环境污染物排放量 地区林业第二产业产值/地区工业生产总值。本文采用 20082019 年中国统计年鉴中国环境统计年鉴中国林业统计年鉴及各省份统计年鉴中 30 个省份的面板数据(其中西藏、香港、澳门和台湾地区因数据不完整未纳入样本)。(二)林业绿色全要素生产率测算结果及分析基于上述公式推导,结果如表 1 和图 2 所示,总体来看,20082019 年我国林业绿色全要素生产 表 1 20082019 年我国各省份林业绿色全要素生产率 省(区、市)2008200920102011201220132014201520162017
31、20182019均值北京1.3131.3341.3991.0831.3101.4201.3651.3911.4321.3931.2491.6021.358天津1.1991.0711.2990.9711.1481.1861.2531.1491.3301.1271.2491.4421.202河北1.1751.1541.0981.2131.2131.1931.2661.1461.1271.0331.3741.4151.201山西0.9870.8540.7940.5480.8010.8671.0110.7571.2951.2711.1131.2370.961内蒙古0.9190.7800.8350.64
32、60.9510.9790.6780.7930.8950.8891.0891.2290.890辽宁1.0200.8791.5161.0881.0241.0001.0630.8900.9701.0801.1021.1611.066吉林0.9680.9911.1130.7550.8510.8780.8460.9280.7830.8441.0721.0970.927黑龙江1.1570.7950.9850.4960.9100.8780.7900.8521.0430.7201.0251.1490.900上海1.0641.0360.9971.1501.5841.3341.3301.3821.6021.540
33、1.5841.8341.370江苏1.2041.1431.3371.0941.1231.1701.2241.2441.3031.3791.5421.7611.294浙江1.0891.1510.9041.0671.3271.1871.3591.2511.3551.3311.4551.6961.264安徽0.8640.8830.9220.7790.9070.9611.1090.9651.0651.0131.0751.0500.966福建0.8670.8660.6730.7750.6320.7750.8100.7730.9440.9671.0511.0190.846江西0.8060.8660.859
34、0.7080.8380.9880.8720.9281.0261.0031.0941.1420.927山东1.1530.9751.3681.0391.0251.2751.1021.0291.0481.1841.2471.4101.155河南0.9900.4180.7000.7550.6410.9210.9620.8050.8971.0931.1501.2620.883湖北1.1231.0871.2811.1021.2261.2881.2501.3111.3851.3811.4151.5381.282湖南0.9650.9171.0080.8480.8220.9211.0620.9141.1431.
35、0651.1541.2261.004广东1.2371.1991.1771.0021.0661.1331.2601.1901.4431.4221.5071.6151.271广西0.9540.9051.0090.9641.0391.0250.9040.9291.0200.9701.1811.3011.017海南0.8080.7881.1040.8310.5660.8740.8620.9110.9851.0451.0821.1750.919重庆1.0901.0210.8170.9220.9470.9240.8931.1851.1041.2091.2541.4391.067四川0.8710.7870.
36、8330.6500.6660.8450.8390.9090.9300.9620.9721.0940.863贵州0.8240.6140.7610.7440.8460.8320.7840.9181.0260.8150.9290.9870.840云南0.9690.9920.8650.9240.9030.8360.9961.0701.1410.9931.0231.1790.991陕西1.0490.8681.0040.9040.9990.9151.0540.9200.8740.9821.0531.2320.988甘肃0.8010.8220.7820.6160.7050.6910.6200.7640.82
37、80.7980.8520.9980.773青海1.0221.0261.1270.9880.8690.8630.9100.8851.0741.0131.0741.2571.009宁夏0.8090.6090.7300.7900.5530.7760.8210.9940.8940.9431.0511.0460.835新疆0.8910.7720.8970.7660.7460.7810.8960.8160.9610.9700.9010.9850.865全国1.0060.9201.0060.8740.9410.9911.0061.0001.0971.0811.1641.2861.031 第 1 期陈建成等:
38、财政支持视角下产业集聚对林业绿色全要素生产率的影响机制研究15率呈缓慢增长趋势,但逐年波动明显,平均值为1.031,说明我国林业发展情况仍需进一步改善。2008 年林业绿色全要素生产率较上一年有所增长,得益于“十一五”规划中有利于林业产业发展政策的制定及实施,以及森林采伐管理改革试点初步取得成效。2010 年前后我国多数省份的林业绿色全要素生产率处于负增长状态,可能是因为这几年自然灾害频发,使得林产品产量减少,从治理到恢复周期较长。2013 年之后我国林业绿色全要素生产率基本保持增长状态,主要是因为集体林权改革继续深化、“天然林资源保护工程”不断推进,以及国家对林业产业振兴资金扶持力度和森林抚
39、育补贴的增大,促进了技术的进步和人才素质的提高。特别是十八大以来,生态文明建设作为“五位一体”全面布局的重要内容得到大力推进,人们的节能环保意识也逐渐增强,到 2019 年,绝大部分地区的林业绿色全要素生产率较上一年有很大提高。具体来说,我国各地区林业绿色全要素生产率存在异质性。林业绿色全要素生产率较高的省(市)分别是上海、北京、江苏、浙江等,从整体上看,这些省(市)多分布于经济基础好、林业产业结构较为完善且交通条件优越的东部地区。近些年,经济发展水平较高的东部地区更加注重林产品高质量创新、完善林产品加工运输链,同时兼顾林业绿色发展。东北地区林业发展基础要素较丰富,但尚未完全从粗放式经济发展模
40、式转化为集约型生产模式,导致林业产业规模不经济,应加快提升要素的配置效率。中部地区林业在发展前期因低效率问题和高耗能、高污染的经济增长方式,抑制了林业绿色全要素生产率的提高,后期随着集体林权改革、生态文明建设的深化,林业发展潜力开始释放。西部地区经济发展水平不足且自然灾害严重,林业产业基础较为薄弱,在技术创新、节能减排等方面的投入也相对欠缺,应加大对西部地区的要素投入与资金支持。四、研究设计(一)动态门槛模型构建考虑不同地区财政支持存在异质性,进一步将财政支持水平纳入林业产业集聚驱动林业绿色全要素生产率的框架中25。基于 Hansen 提出的静态面板门槛回归模型和改进的动态面板门槛回归方法,可
41、以找到样本数据的临界值,并研究样本数据的动态特性30-31。进一步地,Arellano 等32提出的一阶差 分 广 义 矩 估 计 法 (Generalized Method ofMoments,简称 GMM)可以分不同区间水平进行动态估计。因此,本文借鉴 Hou 等28、侯建等33的做法构建非线性动态面板门槛回归模型。本文以林业绿色全要素生产率(P)为被解释变量,以林业产业集聚(C)为核心解释变量,以财政支持水平(G)为门槛变量,并加入宏观经济发展水平(L)、森林受灾度(D)、外商投资(F)、技术创新(T)等一系列控制因素,考察区域间不同财政支持水平下林业产业集聚对林业绿色全要素生产率的影响
42、。基于此,设定面板门槛模型如下。Pit=+1L1+2L2+3Lit+4Dit+5Fit+6Tit+1CitI(Git 1)+2CitI(1 2)+i+t+it(3)IiVtit 式中,为指示函数,为变量门槛值,为个体的特定效应,为时间的特定效应,是随机干扰项,为常数项,、分别为相关变量的估计系数。(二)变量设置被解释变量:林业绿色全要素生产率(P)。本文借鉴刘涛等3、Lin 等11的测度方法,采用带非期望产出的超效率 SBM-Malmquist 指数模型来测算林业绿色全要素生产率,在明确模型定义的基础上,进一步构建投入产出指标体系进行测算。核心解释变量:林业产业集聚(C)。我国林业产业集聚特征
43、日益凸显,学者们也对其展开了深入研究。区位商指数作为最常用的测度方法,能较为准 北京天津河北山西内蒙古辽宁吉林黑龙江上海江苏浙江安徽福建江西山东河南湖北湖南广东广西海南重庆四川贵州云南陕西甘肃青海宁夏新疆0.40.60.81.01.21.41.61.8各省平均值全国平均值林业绿色全要素生产率平均水平省(区、市)图 2 20082019 年我国各省份林业绿色全要素生产率的平均水平 16北京林业大学学报(社会科学版)第 23 卷确地反映各地区林业产业集聚的空间分布特征和专业化程度5,20-22。因此,本文采用区位商(LQ)来衡量林业产业的集聚水平。区位商的计算公式如下。LQij=qij/gdpij
44、qj/GDPj(4)式中,qij为 i 省 j 年林业产业产值,gdpij为 i 省 j 年的地区生产总值,Qj为我国 j 年林业产业产值,GDPj为我国 j 年国内生产总值。LQ 1 表明该地区林业产业的集聚水平较高,LQ 1 表明该地区的林业产业集聚水平较低。门槛变量:财政支持水平(G)。目前我国林业发展形势仍然复杂,农村地区脱贫攻坚成果仍需巩固,因此林业在国家发展中的重要地位长期内不会改变。诸多研究表明财政支出能促进林业产业发展,不同财政支持水平在产业集聚对林业绿色全要素生产率的作用过程中存在一定影响10,25。为进一步厘清财政支持的门槛效应,本文选取林业中央投资完成额在地区生产总值中的
45、占比来衡量财政支持水平。参照已有研究3,16-17,本文设置了一系列控制变量进一步探索影响林业绿色全要素生产率的因素。用各省份每年的人均地区生产总值表示宏观经济发展水平(L),用各省份森林火灾受害面积和森林病虫鼠害面积之和表示森林受灾度(D),用各省份实际利用外资额与林业总产值之比表示外商投资(F),用各省份人均专利授权数表示技术创新(T)。变量的描述性统计如表 2 所示。表 2 变量的描述性统计 变量名称变量符号 平均值 中位数 标准差 最小值 最大值林业绿色全要素生产率P1.0311.0010.4740.4181.602林业产业集聚C1.3140.8631.4200.03110.004财政
46、支持水平G0.4540.3210.4580.0022.789宏观经济发展水平L4.4213.9042.5000.72914.076森林受灾度D3.8533.2743.2080.04520.115外商投资F3.8240.52310.7860.07760.284技术创新T7.7763.65110.5650.35070.839 五、林业产业集聚对林业绿色全要素生产率的财政支持异质门槛效应(一)门槛效应检验本文以财政支持水平的区域异质门槛为切入点,采用动态面板门槛模型重点探讨林业产业集聚对林业绿色全要素生产率的影响。财政支持门槛效应检验结果(见表 3)显示,三重门槛没有通过检验,单重门槛和双重门槛均在
47、 1%的水平上显著。该结果验证了假设 H1:林业产业集聚对林业绿色全要素生产率具有显著的财政支持门槛效应。据此,本文基于双重门槛进行分析。表 3 财政支持门槛效应检验结果 门槛F值P值抽样次数临界值1%5%10%单一门槛25.842*0.01030027.0156.4063.339双重门槛77.458*0.00330064.5359.0835.170三重门槛0.2370.6833008.0365.2233.645注:P值和临界值均为采用自抽样法(Bootstrap)反复抽样300次得到的结果,*表示在1%的水平上显著。根据门槛理论,林业产业集聚对林业绿色全要素生产率的作用过程中存在显著的财政支
48、持双重门槛效应,门槛效应估计值是 0.276 和 0.237,两个门槛效应估计值分别在 95%置信区间 0.276,0.296、0.208,0.252 内(见表 4)。因此,根据门槛效应估计值将财政支持水平划分为低财政支持水平(G 0.237)、中等财政支持水平(0.237 0.276)。表 4 财政支持门槛效应估计值 门槛门槛效应估计值95%置信区间单一门槛0.2080.028,0.260双重门槛0.2760.276,0.2960.2370.208,0.252三重门槛0.2980.295,0.309 (二)动态门槛回归估计本文分别考虑不同财政支持水平下,林业产业集聚驱动林业绿色全要素生产率提
49、升的结构变化门槛作用及其差异。估计结果如表 5 所示。由表 5 可知,当财政支持水平较低时(G 0.237),林业产业集聚对林业绿色全要素生产率产生负向影响;当财政支持水平提高并跨过阈值时(0.237 0.276),林业产业集聚对林业绿色全要素生产率提高的正向促进效应有所降低。上述结果验证了假设 H2:不同财政支持水平下林业产业集聚对林业绿色全要素生产率的影响存在差异,并且财政支持水平的提高激发了林业产业集聚对绿色全要素生产率的正向影响。也就是说,第 1 期陈建成等:财政支持视角下产业集聚对林业绿色全要素生产率的影响机制研究17较低的财政支持水平不利于激发林业产业集聚对林业绿色全要素生产率提高
50、的促进作用,随着财政支持水平的提高并超过临界值,其不仅有利于林业产业集聚的专业化和多样化发展,而且能够增强产业集聚的正外部性,进而促进林业绿色全要素生产率的提高。因此,把握好财政支持的临界点能够促进林业产业抱团发展,激发林业产业集聚的经济效应和生态效应,进一步提升林业绿色全要素生产率。一方面,当财政支持水平较低时,林业产业本身的自然风险、社会风险被忽视。首先,林业产品生长周期较长、分布空间较广,加之林业在发展初期技术进步较慢、从业人员环保意识薄弱等,使得林业生产经营者规模偏小且分散、林业生产方式较为粗放、资源要素产出效率偏低,进而不利于林业绿色全要素生产率提高23。其次,根据地理学第一定律,在
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100