ImageVerifierCode 换一换
格式:PPT , 页数:27 ,大小:1.40MB ,
资源ID:4069973      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4069973.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(数值分析牛顿插值法.ppt)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

数值分析牛顿插值法.ppt

1、华长生制作2我们知道,Lagrange插值多项式的插值基函数为形式上太复杂,计算量很大,并且重复计算也很多由线性代数的知识可知,任何一个n次多项式都可以表示成共n+1个多项式的线性组合那么,是否可以将这n+1个多项式作为插值基函数呢?华长生制作3显然,多项式组线性无关,因此,可以作为插值基函数华长生制作4有再继续下去待定系数的形式将更复杂为此引入差商和差分的概念华长生制作5定义1.称依此类推华长生制作6显然华长生制作7(2)差商具有对称性,即任意调换节点的次序,差商的值不变如用余项的相同证明华长生制作8规定函数值为零阶差商差商表Chashang.m华长生制作9xifxi fxi,xi+1fxi

2、,xi+1,xi+2fxi,xi+1,xi+2,xi+2002832751256216例1 求 f(xi)=x3在节点 x=0,2,3,5,6上的各阶差商值解:计算得如下表华长生制作10设插值多项式满足插值条件则待定系数为华长生制作11称定义3.由插值多项式的唯一性,Newton基本插值公式的余项为为k次多项式华长生制作12因此可得下面推导余项的另外一种形式华长生制作13因此一般Newton插值估计误差的重要公式另外华长生制作14kxkf(xk)一阶差商 二阶差商 三阶差商 四阶差商012341234514786 3 3 0 1 -1 -1/3 -2 -3/2 -1/6 1/24华长生制作15

3、定义.华长生制作16依此类推可以证明如华长生制作17差分表华长生制作18在等距节点的前提下,差商与差分有如下关系华长生制作19依此类推华长生制作20由差商与向前差分的关系Newton插值基本公式为如果假设华长生制作21则插值公式化为其余项化为华长生制作22称为Newton向前插值公式(又称为表初公式)插值余项为华长生制作23插值余项为根据向前差分和向后差分的关系如果假设可得Newton向后插值公式华长生制作24 例例 4 设设x0=1.0,h=0.05,给出给出 在在 处的函数值如表处的函数值如表2-5的第的第3列,试用三次等距节点插值公式求列,试用三次等距节点插值公式求f(1.01)和和f(

4、1.28)的近似值。的近似值。0 1.00 1.00000 0.02470 1 1.05 1.02470 0.02411 -0.00059 2 1.10 1.04881 0.02357 -0.00054 -0.00005 3 1.15 1.07238 4 1.20 1.09544 0.02307 -0.00048 -0.00003 5 1.25 1.11803 0.02259 -0.00045 6 1.30 1.14017 0.02214 表表2-5华长生制作25 解解 用用Newton向前插值公式来计算向前插值公式来计算f(1.01)的近似值。先构造与均的近似值。先构造与均差表相似的差分表,

5、见表差表相似的差分表,见表2-5得上半部分。由得上半部分。由t=(x-x0)/h=0.2的得的得用用Newton向后插值公式计算向后插值公式计算f(1.28)的近似值,可利用表的近似值,可利用表2-5中的下半部中的下半部分。由分。由t=(x-x6)/h=-0.4,得,得事实上,事实上,f(1.01)和和f(1.28)的真值分别为的真值分别为1.00498756和和1.13137085。由。由此看出,计算结果是相当精确的。此看出,计算结果是相当精确的。例例 2.5 已知已知f(x)=sinx的数值如表的数值如表2-6的第的第2列,分别用列,分别用Newton向向前、向后插值公式求前、向后插值公式

6、求sin0.57891的近似值。的近似值。华长生制作260.4 0.38942 0.5 0.47943 0.09001 0.6 0.56464 0.08521 0.00480 0.7 0.64422 0.07958 -0.00563 -0.00083 x sinx 2 2 3表2-6 解解 作差分表如表作差分表如表2-6,使用,使用Newton向前差分公式向前差分公式x0=0.5,x1=0.6,x2=0.7,x=0.57891,h=0.1,则则t=(x-x0)/h=0.7891,即即sin0.578910.54714。误差为。误差为华长生制作27若用若用Newton向后插值公式,则可取向后插值公式,则可取x0=0.4,x1=0.5,x2=0.6,x=0.57891,h=0.1,t=(x-x2)/h=-0.2109。于是。于是即即sin0.578910.54707。误差为。误差为

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服