ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:43.04KB ,
资源ID:4064904      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4064904.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(中小企业精益生产路径探析(中英文翻译).doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

中小企业精益生产路径探析(中英文翻译).doc

1、Quantifying Energy Savings from Lean Manufacturing Productivity The rational for claiming energy saving comes from comparing the baseline energy us to the post—event energy use。 In the baselin scenario, production is increased by addin manufacturing equipment or by extendin operating hours. As su

2、ch, in the baselin scenario, energy use increases from existing us due to additional equipment or operating hours。 Alternately, in the post-event scenario, Lea Manufacturing techniques enable production gains without increasing operating hours o adding manufacturing equipment. Hence in th post—e

3、vent scenario, energy use is not muc different that existing energy use, and much les than in the baseline scenario。 Currently, claiming energy savings fro productivity improvements is not widespread among energy efficiency programs or Lea consultants。 Indeed, little has been published o how ene

4、rgy savings should be quantified fro these improvements。 In this paper we present brief review of the existing algorithms used t calculate energy savings from productivity improvements。 Furthermore, we propose tw new approaches to calculating energy saving each with examples。 EXISTING APPROACHES

5、 TO CALCULATING PRODUCTIVITY RELATED ENERGY SAVINGS Department of Energy Industrial Assessment Centers The Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies program sponsors 26 Industrial Assessment Centers (IAC) located at universitie

6、s throughout the nation. The IACs provide energy, waste and productivity assessments free of cost to qualifying small and medium sized manufacturing facilities. Each IAC must report expected energy, waste and productivity savings from its assessment recommendations。 IACs may claim “effective” energy

7、 savings from productivity recommendations。 The approach to calculating energy savings is based on comparing pre and post—implementation energy intensity and multiplying the difference by post—implementation production rates (Papadaratsakis, et al。, 2003。). While this approach has been published i

8、n detail, we will present an abbreviated example here。 For example, a production process currently uses 10 kWh/unit。 After implementation of Lean Manufacturing recommendations, the process only uses 8 kWh/unit, and production has been increased to from 1,000 to 1,200 units/year。 Equation 1 presents

9、the effective energy savings from this example: (1,200 units/year) x (10 – 8) kWh/unit = 2,400 Kissock (2005) of the University of Dayton IAC developed a similar but more detailed method。 While Papadaratsakis et al. only considered unitized energy use, Kissock discussed unitized energy use (en

10、ergy intensity) and net energy use。 Kissock also used inverse modeling of regression models based on real data to determine the unitized energy for production quantity—dependent, temperature—dependent and operating hours dependent components of energy use。 Kissock also recognized the influence of

11、product demand on energy savings, showing different net and unitized energy savings dependent whether production quantity actually increasingly or not。 Northeast Utilities Process Reengineering Improvement for Manufacturing Efficiency (PRIME) Northeast Utilities (NU) sponsors the PRIME program thro

12、ugh two of its member utilities, Connecticut Light & Power (CL&P) and Western Massachusetts Electric Company (WMECO)。 The PRIME program is solely focused on productivity improvement to achieve energy savings。 Lean Manufacturing consultants are contracted to provide three to four day “Lean events"。 A

13、s the Lean consultants do not necessarily have energy efficiency expertise, energy savings are calculated with a generalized algorithm。 The NU savings algorithm relies on a small number of easily obtained and understandable inputs, which influence savings calculations and will vary significantly fr

14、om site to site。 Other factors that are not easily obtained may be timelier and costly assessment to calculate, may not vary significantly, and are thus substituted with generic assumptions。 NU's algorithm requires the following inputs: 1. Annual plant—wide electricity use 2。 Percent affected

15、electricity use: Many of the PRIME events do not target the entire manufacturing facility, but perhaps just one production line。 As such, determining how much of the total annual electricity use is attributable to the production lines in question is an important estimate, typically based on product

16、ion values or sales。 3。 Pre- and post—event production quantity。 In addition to these three inputs, standard assumptions applied to each site include: 1。 10—year measure life: This value is used to onvert annual savings as determined by the savings algorithm to lifetime savings。 2。 85%/10%/5% e

17、nergy distribution assumption: The savings algorithm assumes that of the affected electricity use, 5% is attributable to equipment with no claimable savings。 10% of electricity is attributed to operating—hour dependent manufacturing equipment. The remaining 85% of affected electricity use is attrib

18、uted to production quantity dependent manufacturingequipment。 3。 Savings on incremental production: The algorithm assumes that 6% energy savings are achieved only on incremental energy use of production—dependent equipment. The existing, baseline and post-event electricity use is calculated for

19、independent, hours—dependent and production-dependent components. Office electricity use is assumed constant for the existing, baseline and post—event scenarios. Hours—dependent electricity use is assumed to increase proportionally with production from the existing to baseline scenarios。 However, in

20、 the post-event scenario,hours—dependent electricity use is assumed to beequivalent to the existing scenario。 Finally,production—dependent electricity use increasesproportionally with production from the existing to baseline scenarios。 However, post-event electricity use is calculated assuming that

21、incremental production is 6% less energy intense than in the baseline scenario。 NEW APPROACHES TO CALCULATING PRODUCTIVITY RELATED ENERGY SAVINGS Lean Manufacturing Techniques and Improvement Types There are a variety of techniques referred to as Lean Manufacturing. A Lean Manufacturing p

22、roject may utilize any number of these techniques, with the different techniques affecting productivity and thus energy use in different ways。 While the implementation of a Lean technique often improves productivity, however, it does not guarantee a productivity improvement。 Lean Techniques tha

23、t may increase production include 5S, Visual Management, Standardized Work, Value Stream Mapping (VSM), Cellular flow, kanban, Poka Yoke,Point—of-Use (POU) systems and Kaizen events.Lean Techniques that directly target production increases include Quick Changeover and Total Productive Maintenance (T

24、PM)。 Seryak et al。(2006) briefly described these Lean improvement types and their relationship to energy use。 The Lean Manufacturing techniques listed above improve productivity in several ways,which may or may not have impacts on energy use。 Additionally, Lean Manufacturing techniques can also

25、 improve energy use in ways that have no relation to productivity。 Improvement types that affect energy use include reduced changeover time, reduced downtime, reduced setup time, reduced cycle time, increased throughput, rework/scrap reduction, part travel reduction, space reduction and direct

26、equipment efficiency improvement.Improvement types that do not typically affect energy use include inventory reduction. Basis for Both Algorithms Both of our new approaches begin with the same generating equation (Eq. 2):Energy Savings This general equation can be used with statistical regre

27、ssion models, which we will refer to as the “Energy Signature” method。 The same equation is the basis for considering the energy use of the specific industrial equipment involved,which we will refer to as the “Energy Breakdown” method。 Examples of both methods are presented below. Energy Breakdown M

28、ethod The Energy Breakdown method involves calculating the energy savings for each piece of electricity—using equipment。 The main steps used in the Energy Breakdown method are: 1. Develop an inventory of energy using equipment。 2. Determine how each piece of equipment uses energy。 3。 Quantify

29、existing energy use for each piece of equipment, based on pre—Lean event production。 4。 Calculate baseline energy use for each piece of equipment, based on post-Lean event production and pre-Lean event processes。 5。 Calculate post—event energy use for each piece of equipment, based on post—Lean

30、event production and post-Lean event processes. 6. Compare post—event to baseline scenarios to calculate energy savings。 The details of energy savings calculations using the energy breakdown method differ depending on which improvement type is in question。 As such, like methods will be explored fo

31、r the Energy Breakdown method。 The relationship between equipment energy use and production differs based on the type of equipment。 There are four main categories of equipment: Equipment with energy use independent of production (includes office equipment), Equipment with energy use dependent

32、on production quantity, Equipment with energy use dependent on operating hours, Equipment with energy use dependent on both production quantity and operating hours。 For example, an exhaust fan that operates 24 hours/day for a two-shift operation will use the same amount of energy no matter

33、 if production quantity or production hours increase. The exhaust fan is an example of equipment with energy use independent of production factors. Next, imagine dedicated production presses that ully shut off during idle cycle times. This equipment uses energy directly proportional to production qu

34、antity, regardless of the operating hours。 However, lighting equipment for this same operation may be shut off on weekends, and is thus dependent on operating hours. Dedicated production presses that do not shut down, but instead idle, would have energy use dependent on both production quantity and

35、operating hours。 Inventory Reduction and Space Reduction In some cases an inventory reduction could esult in a reduction in space use. Space use can also be reduced for other reasons, such as earranging equipment during a Cellular Flow project。 Reducing space use can have energy savings, provided t

36、he lighting and air conditioning equipment in the eliminated space can be turned off or reduced。 To calculate energy savings, lighting, air—conditioning and other equipment should be inventoried, with power equirements and existing runtimes detailed。 For example, imagine a small warehouse llumin

37、ated by ten 400-W Metal Halide fixtures, drawing 460—Watts each that operates 20 hours per day, and is ventilated by two 5 HP fans that operate 24 hours per day. The first step for calculating energy savings would be to inventory equipment, as presented in Table 1。 In this paper we’ve outlined

38、 the conceptual framework for claiming energy savings from productivity improvement projects。 The relationship between production and manufacturing energy use has been reviewed on a plant—wide level and for specific manufacturing equipment。 We’ve suggested four categories of manufacturing equipment,

39、 based on their relationship between production and energy use. Common Lean Manufacturing improvements were discussed, along with their affect on energy use and the techniques used to achieve them。 Finally, we described several existing energy efficiency programs which either promote productivity im

40、provements or claim energy savings from productivity improvements。 As state and utility energy efficiency programs expand and broaden, reducing manufacturing energy intensity remains a promising opportunity to achieving energy savings. We’ve shown how encouraging productivity improvements are ph

41、ilosophically similar to existing “New Construction” or “Lost Opportunity” programs. The major obstacle to achieving savings through productivity improvement is a combination of market factors, which affect production levels, and non—Lean Energy use in the facility. As shown, without Lean Energy, ma

42、nufacturing facilities will require the same amount of energy use as pre improvement。 Coordinating Lean Manufacturing events with Lean Energy assessments could improve the persistence of savings from productivity improvements。 中小企业精益生产的实施路径探析 对节能的需求源自我们实际生产与能量使用基准的差别。在基准情况下,产量增加是通过增加生产设备或延长工作时

43、间来获得的。这种情况下,即使在基准情况下,由于设备的增多和工作时间的延长,能量消耗也将随之增长。 或者在事后,我们通过精益生产方法,使我们在没有增加工作时间和增多设备的情况下,依然能够保证足够的产量.因此,在这种情况下,能量的使用和前者并没有什么不同,甚至比基准的能量使用更少。 目前,通过提高生产率来节约能源并没有在能源效用项目和生产咨询方面得到广泛应用。事实上,鲜有企业出版关于从这些改进中来量化节能的刊物。本文简要回顾了现有的估算方法,便于能量使用量的计算.另外,我们也提出新的方法去估算每个实例中的能量使用情况。目前用于估算涉及节能的生产效率的方法由能源工业评估中心作出。 该部门以及由

44、其发起的26个工业评估中心坐落在贯穿整个国家的大学里。IACS提供能源、废物和生产力的评估成本和为中型企业提供生产设备。每个IAC必须从评估的报告中提供预期的能源、废物和生产力的节省情况.IACS可以从生产建议中提出有效的能源节约方案,这种方案是基于和以前的能源实施后的强度,再乘以实施后的生产速度.虽然这种方法已经详细地出版,我们现在只需一个简化的例子即可.例如,生产以单位需要10千瓦时,采纳精益生产方法后,变成了8千瓦时,并且年产量由1000上升至1200,从这个例子中看出了有效的节能方法:1200单位*(10—8)千瓦时/每单位=2400。 戴盾大学的吉斯索克开发出一种类似的、却更详细的

45、方法.而帕帕戴瑞特斯基斯等人只考虑了整体能源的使用,吉斯索克讨论了能源使用(能源强度)和净能源使用。吉斯索克也使用逆向回归模型,该模型给予真实的数据,以确定单位能源的产量、温度依赖性和单位能量的使用时间。吉斯索克也认识到节能产品需求的影响,不论产量增长与否,都显示出了对节能的不同程度的依赖:东北公用流程流程提高生产效率的公司和其赞助企业,康涅狄格店里与氯普照明以及马萨诸塞州西部电器公司。生产节能计划完全集中在提高生产率上达到节约能源。精益生产顾问合同,提高三至四天的惊异时间,作为惊异顾问并不一定具有节能专业知识。 1。全厂每年的用电量。 2.用电量受影响的百分数:最初的许多事件不是

46、针对整个制造过程,但或许只是针对一条生产线。因此,生产线的问题是确定全年总用电量的多少一个重要评估,通常是根据产值或销售。 3。超前和事件后的生产量。除了上述三个输入,适用于每个站点的标准假设包括:1.10年的生活措施,这个值是有平均每人每年可节省的用电量的得出来的.2节余算法假定的受影响的用电量,5%是指没有索赔节省设备。10%的用电量是由于工作小时的依赖制造设备所导致.其余85%是由于生产数量相关的制造设备所造成。。 节余增量生产:该算法假定只对增量依赖生产设备的能源使用实现6%的能源节约.现有的基准和事后的用电量是有每小时生产相关元件独立算出的。办公用电量的现有基准和事后的情况假设不

47、变。假定每小时的用电量是在生产比例维持现有的基准。然而,在事后的情况下,假定每小时的用电量不变相当于现有的电量情况下.最终,按照生产用电量的增加与生产比例从现有的基线中算出。然而,用电量的计算是假设增加的产量是是用减少6%的能源计算的,按照基准先推测更准确。 计算节约生产力相关的能源的新途径 精益制造技术和改进类型 有一种技术定义为精益生产,精益生产制造项目科可能运用这项技术的任意一种技术,运用不同技术去生产,从而以不同的方式使用能源。而实施精益技术提高了生产力,但是,它并不保证了生产率的提高。 精益生产技术内容包括5S:可视化管理,标准化作业,价值流图(VSM),,蜂窝流,看板,使用

48、点(POU)中的系统和改善项目的直接目标产量的增加,包括精益技术快速转换和全员生产维修(TPM)等.(2006)简要介绍了这些精益生产技术用来改善能源的使用以及他们之间的关系。 精益生产技术对于提高生产力除了陈列的上述几种方法,这可能或可能不会有对使用能源有影响。此外,精益生产技术还可以提高能源使用率而不对有生产力产生影响. 影响能源使用的改进类型包括减少转换时间,减少停机时间,减少安装时间,减少周期时间,提高吞吐量,减少返工/报废,减少部分循环时间,减少空间和直接设备效率的提高.I提高类型一般不影响能源的使用和库存的减少。基于这两种算法的基础. 我们都用相同的生成方程开始新的方法

49、节能!这种一般的方程可以用可以用统计回归模型,我们将称之为“能源签名法”。相同的方程是在考虑涉及具体的工业设备的能源使用的基础上我们称之为能源分解的方法,两种方法的例子如下 1、能源分解法。能源分解方法计算每件使用电力设备的能源节约量。能源分解方法中使用的主要步骤是:1、制定能源使用的设备清单。2、确定每件设备的使用能源量3、以预计精益生产为基础,量化现有的每台设备的能源使用情况。4、计算基准为每件设备的能源使用,基于精益事件后的生产和预期精益事件过程。5、基于精益事件后生产和后精益事件进程,计算每件设备的能源使用。6、事后通过比较基准情景来计算节约能源.用能量分解的方法节约能量的

50、计算过程有多不同,这取决于改善型的选取问题。类似的,像这种将被用于探讨能源分解,设备的能源使用情况和产品之间的不同是在不同类型的设备上产生的. 设备主要有四个类别:不消耗能源的生产设备(包括办公设备),消耗能源的设备,在一段时间内会消耗能源的设备,一直会消耗能源的设备.例如,一个排气风扇运行24小时/天,为两班作业,将使用的相同数量的能量,不管生产量或生产时间的增加。排气扇是一个不消耗能源的生产设备的例子,接下来,想想那种在空闲时间完全关闭的印刷机。不论是在工作时间还是在关闭时间,这种设备能源消耗量与生产量成正比,然而此相同的操作,照明设备,可在周末关闭,因此依赖通关时间.不关闭而是闲置的印

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服