ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:53.04KB ,
资源ID:4060377      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4060377.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(统计学感想.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

统计学感想.doc

1、应用统计学课程总结 统计,从我的理解来看,就是为了探究某件事情,查询某种关系而去进行的数据收集,数据处理和数据分析。不同于以往的数学类课程,统计并不执着于数据的因果关系,更侧重于数据之间的相关关系,最近在读维克托的大数据时代,作者也在强调大数据时代是相关关系的时代。所以在这个信息爆炸的年代,统计在大数据中占有很重要的地位,尤其是在计算机的辅助下,我们可以对大样本甚至全体样本进行分析和处理,这就需要我们理解统计,可能不知道原理,但一定要知道在什么地方去运用何种方法。先抛开以上观念不谈,这学期统计课最喜欢的还是老师在讲课的时候能够时刻把知识连贯起来,从来没有零零散散的讲过某个知识点。为什么会有中位

2、数?它是用来干什么的?中位数和平均数的缺陷是什么?为什么会出现四分位点和箱图?为什么会这么做是我在课上感受最深也是受益最多的地方.如今学完统计,我自认为能够很清楚的为了某项目的去做调查问卷,基于数据做出合理的处理和分析,然后多样化的表达出来,从而验证我的目的。因为我知道该在什么条件下去做什么分析,有什么缺陷需要做什么去补全.所以,感谢老师给了我一个完整的统计体系,即使以后觉得知识不够用时,我仍能够在当前体系继续完善它。另外,我养成了看课件,看书先看目录和重点的习惯,以前在这方面做得不是很到位,总是觉得自己足够聪明,什么东西都是直接拿来看,看到好的便觉得不错,也不管整个体系是什么样子的。如今深刻

3、觉得先把知识体系建好的好处,站在全局的角度看问题非常全面,好像在飞机上观察一个城市一般。这也是以前上课所欠缺的,我感觉以前的课程老师也很少注重这方面,总是说今天讲什么,没有前文,也没有后果。以上两点我觉得比我收获整个统计体系的知识更重要,这是对我学习方法的进一步完善.之后将总结一下我在统计课上学到的知识.首先是收集数据:其主要的方法就是调查问卷和从网上的数据库中去获得。这两种方式在前两次大作业中我们都尝试过了.现在网络很发达,调查问卷也可以直接发放到网上,也可以很方便的做分层和整群抽样调查。当时做调查问卷感悟最大的是怎样去让问题更有吸引力,我们对有个小组由于做了关于我是歌手这个非常火的题目,所

4、以收到300多份问卷,而我们做的是有关考研班的调查问卷,所以收到的问卷才40多份。当数据收集到之后,一般来讲是做描述性统计,这是一种简单而又直白的,但却富有表现力的展现方式。可以直接观察到各组之间的优劣和占总体的大小。当时我们组做得大作业是有关全世界各国GDP的。条形图能够反应各国之间的差异,我们很明显能够看到美国的GDP大概是中国的两倍。而通过饼图,最直观的感受是美国GDP占全世界的四分之一,这是个体与总体的比较.描述性统计下分为定性和定量,所用方法不是很一致,在定量的学习中,我们依次理解了平均数,中位数,四分位数,箱图,方差,标准差,变异系数,偏倚程度。这是一个渐进的过程,平均数对于偏态比

5、较敏感,易受极值的影响,所以我们引用了中位数,相对而言受极值的影响较小.而平均数和中位数都是一个确切的点,不能表示范围,所以我们有了四分位数,进而再表示为图形就是箱图。但是以上只能表现数据的位置特征,有些时候我们更关系数据的波动和密集程度,比如打靶的成绩。所以就有了方差和标准差,都是表示数据对于平均数的波动程度.对于身高和体重来讲,由于平均数的不同,所以对于不同数据,比如身高和体重,由于基数不一样,方差不一定越大越好,于是又有了变异系数,这样不用的数据也可以比较波动程度。通过位置特征和离散特征,我们就能够将数据的形态特征表现出来.描述性统计是对单个变量内部特征的处理,从而得到关于单个变量的特性

6、。描述性统计是剩下部分的基础,也就是假设检验和方差分析,或者说研究多变量的基础。研究多个变量,首先,也是最重要的是验证变量是否符合正态分布。正态和非正态,意味着之后选取的方法将截然不同.正态将会以平均数作为核心,比如ANOVA,LSD等,非正态则会以秩或者中位数作为核心,主要以sign检验,秩和检验,平均秩检验等非参检验.方差分析也是一个渐进的的过程。ANOVA是只研究在一个因子下多方案的差异性,LSD就可以研究多个方案两两之间的差异性。之后就是在多个因子下,Block是研究多个无相互作用因子下方案的差异性,factorial experiment则是能够再在有相互作用下的因子下研究一个因子对于多个方案的差异性。非参检验也是从最简单的中位数开始,从单变量开始拓展。秩和检验解决了多个方案,并不配对的问题,比符号秩更具有普适性,但是精确度不如符号秩.K-W则是通过比较各样本和总体平均秩来判定多个方案是否存在差异性。剩下的就只有相关性分析了,正态的时候用persion,非正态则用spearman,两者之间原理是一样的,只不过一个是用平均值,另一个使用中位数。我们在做军事建模的时候就选用了spearman。以上就是我的总结,在今后的日子里,希望能够学习到有关复杂网络和大数据的知识,并在这个方向有所发展。如果有机会,我希望能够在研究生的时候跟随老师学习,做项目。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服