1、此文档仅供收集于网络,如有侵权请联系网站删除(一)分式不等式:型如:或(其中为整式且)的不等式称为分式不等式。(2)归纳分式不等式与整式不等式的等价转化:(1) (3)(2) (4)(3)小结分式不等式的解法步骤:(1)移项通分,不等式右侧化为“0”,左侧为一分式(2)转化为等价的整式不等式(3)因式分解,解整式不等式(注意因式分解后,一次项前系数为正)(1)分式不等式的解法:解关于x的不等式方法一:等价转化为: 方法二:等价转化为: 或 变式一: 等价转化为: 比较不等式及的解集。(不等式的变形,强调等价转化,分母不为零)练一练:解关于x的不等式 例1、 解关于x的不等式:解: 即, (保证
2、因式分解后,保证一次项前的系数都为正) 等价变形为: 原不等式的解集为例2、解关于x不等式 方法一:恒大于0,利用不等式的基本性质方法二:移项、通分,利用两式同号、异号的充要条件,划归为一元一次或一元二次不等式。例3、 解关于x的不等式:解:移项 通分 即,等价转化为,当a0时,原不等式的解集为当a0时,原不等式的解集为当a=0时,原不等式的解集为 一元二次不等式与特殊的高次不等式解法例1 解不等式.分析一:利用前节的方法求解;分析二:由乘法运算的符号法则可知,若原不等式成立,则左边两个因式必须异号,原不等式的解集是下面两个不等式组:与的解集的并集,即x|=x|-4x1=x|-4x1.书写时可
3、按下列格式:解二:(x-1)(x+4)0或x或-4x1-4x1,原不等式的解集是x|-4x1.小结:一元二次不等式的代数解法:设一元二次不等式相应的方程的两根为,则;若当时,得或;当时,得.若当时,得;当时,得.分析三:由于不等式的解与相应方程的根有关系,因此可求其根并由相应的函数值的符号表示出来即可求出不等式的解集.解:求根:令(x-1)(x+4)=0,解得x(从小到大排列)分别为-4,1,这两根将x轴分为三部分:(-,-4)(-4,1)(1,+);分析这三部分中原不等式左边各因式的符号(-,-4)(-4,1)(1,+)x+4-+x-1-+(x-1)(x+4)+-+由上表可知,原不等式的解集
4、是x|-4x0;解:检查各因式中x的符号均正;求得相应方程的根为:-2,1,3;列表如下:-2 1 3x+2-+x-1-+x-3-+各因式积-+-+由上表可知,原不等式的解集为:x|-2x3.小结:此法叫列表法,解题步骤是:将不等式化为(x-x1)(x-x2)(x-xn)0(0. x|-1x0或2x3.思考:由函数、方程、不等式的关系,能否作出函数图像求解 例2图 练习图直接写出解集:x|-2x3. x|-1x0或2x0(0”,则找“线”在x轴上方的区间;若不等式是“0”,则找“线”在x轴下方的区间.注意:奇穿偶不穿例3 解不等式:(x-2)2(x-3)3(x+1)0.解:检查各因式中x的符号
5、均正;求得相应方程的根为:-1,2,3(注意:2是二重根,3是三重根);在数轴上表示各根并穿线,每个根穿一次(自右上方开始),如下图:原不等式的解集为:x|-1x2或2x3.说明:3是三重根,在C处穿三次,2是二重根,在B处穿两次,结果相当于没穿.由此看出,当左侧f(x)有相同因式(x-x1)n时,n为奇数时,曲线在x1点处穿过数轴;n为偶数时,曲线在x1点处不穿过数轴,不妨归纳为“奇穿偶不穿”.练习:解不等式:(x-3)(x+1)(x2+4x+4)0.解:将原不等式化为:(x-3)(x+1)(x+2)20;求得相应方程的根为:-2(二重),-1,3;在数轴上表示各根并穿线,如图:原不等式的解
6、集是x|-1x3或x=-2.说明:注意不等式若带“=”号,点画为实心,解集边界处应有等号;另外,线虽不穿-2点,但x=-2满足“=”的条件,不能漏掉. 2分式不等式的解法例4 解不等式:.错解:去分母得 原不等式的解集是.解法1:化为两个不等式组来解:x或,原不等式的解集是.解法2:化为二次不等式来解: ,原不等式的解集是说明:若本题带“=”,即(x-3)(x+7)0,则不等式解集中应注意x-7的条件,解集应是x| -7x3.小结:由不等式的性质易知:不等式两边同乘以正数,不等号方向不变;不等式两边同乘以负数,不等号方向要变;分母中有未知数x,不等式两边同乘以一个含x的式子,它的正负不知,不等
7、号方向无法确定,无从解起,若讨论分母的正负,再解也可以,但太复杂.因此,解分式不等式,切忌去分母.解法是:移项,通分,右边化为0,左边化为的形式.例5 解不等式:.解法1:化为不等式组来解较繁.解法2:,原不等式的解集为x| -1x1或2x3.练习:1.课本P21练习:3;2.解不等式.答案:1.x|-5x8;x|x-1/2;2.x|-13x-5.练习:解不等式:.(答:x|x0或1x2)1. 不等式的解集是 2. 不等式的解集是 3. 不等式的解集是 4. 不等式的解集是 5. 不等式的解集是 6. 不等式的解集是 7. 不等式的解集是 8. 不等式的解集是 9. 不等式的解集是 10. 不等式的解集是 11. 不等式的解集是 12. 不等式的解集是 13. 不等式的解集是 14. 不等式的解集是 15. 不等式的解集是 16. 不等式的解集是 17. 不等式的解集是 18. 不等式的解集是 19. 不等式的解集是 20. 不等式的解集是 答案1. 2. (-2,3)3. 4. 5. 6. 7.8. (1,2)9. 10. 11. 12. 13. 14. 15.16. -1,217.18.19.20. 只供学习与交流