1、此文档仅供收集于网络,如有侵权请联系网站删除基本不等式应用一基本不等式1.(1)若,则 (2)若,则(当且仅当时取“=”)2. (1)若,则 (2)若,则(当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”);若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则(当且仅当时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求
2、最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例1:求下列函数的值域(1)y3x 2 (2)yx解:(1)y3x 22 值域为,+) (2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)解题技巧:技巧一:凑项例1:已知,求函数的最大值。解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,当且仅当,即时,上式等号成立,故当时,。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数例1. 当时,求的最大值。解析:由知,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和
3、不是定值。注意到为定值,故只需将凑上一个系数即可。当,即x2时取等号 当x2时,的最大值为8。评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。变式:设,求函数的最大值。解:当且仅当即时等号成立。技巧三: 分离例3. 求的值域。解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x1)的项,再将其分离。当,即时,(当且仅当x1时取“”号)。技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式
4、子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用基本不等式来求最值。技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。练习求下列函数的最小值,并求取得最小值时,x 的值. (1) (2) (3) 2已知,求函数的最大值.;3,求函数的最大值.条件求最值1.若实数满足,则的最小值是 .分析:“和”到“积”是一个缩小的过程,而且定值,因此考虑利用均值定理求最小值, 解: 都是正数,当时等号成立,由及
5、得即当时,的最小值是6变式:若,求的最小值.并求x,y的值技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。2:已知,且,求的最小值。错解:,且, 故 。错因:解法中两次连用基本不等式,在等号成立条件是,在等号成立条件是即,取等号的条件的不一致,产生错误。因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。正解:,当且仅当时,上式等号成立,又,可得时, 。变式: (1)若且,求的最小值(2)已知且,求的最小值技巧七、已知x,y为正实数,且x 21,求x的最大值.分析:因条件和结论分别是二次和一次,故采用公式a
6、b。同时还应化简中y2前面的系数为 , xx x下面将x,分别看成两个因式:x 即xx 技巧八:已知a,b为正实数,2baba30,求函数y的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。法一:a, abb 由a0得,0b15令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30ab
7、a2b a2b2 30ab2令u则u22u300, 5u3 3,ab18,y点评:本题考查不等式的应用、不等式的解法及运算能力;如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.变式:1.已知a0,b0,ab(ab)1,求ab的最小值。2.若直角三角形周长为1,求它的面积最大值。技巧九、取平方5、已知x,y为正实数,3x2y10,求函数W的最值.解法一:若利用算术平均与平方平均之间的不等关系,本题很简单 2 解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W0,W
8、23x2y210210()2()2 10(3x2y)20 W2 变式: 求函数的最大值。解析:注意到与的和为定值。又,所以当且仅当=,即时取等号。 故。评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。应用二:利用基本不等式证明不等式1已知为两两不相等的实数,求证:1)正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc例6:已知a、b、c,且。求证:分析:不等式右边数字8,使我们联想到左边因式分别使用基本不等式可得三个“2”连乘,又,可由此变形入手。解:a、b、c,。同理,。上述三个不等式两边均为正,分别相乘,得。当且仅当时取等号。应用三:基本不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值范围。解:令, 。 , 应用四:均值定理在比较大小中的应用:例:若,则的大小关系是 .分析: ( RQP。只供学习与交流