ImageVerifierCode 换一换
格式:DOC , 页数:5 ,大小:21.54KB ,
资源ID:4029846      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4029846.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(一元二次方程的概念说课稿.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

一元二次方程的概念说课稿.doc

1、21。1一元二次方程说课稿各位评委老师好:我今天说课的题目内容是:一元二次方程。这节课我将从教材、目标、教法、过程、板书这五方面进行分析.一、 教材的地位和作用 一元二次方程是新人教版九年制义务教育课本中九年级上第21章的第一节内容,是中学数学的主要内容之一,在初中数学中占有重要地位.通过一元二次方程的学习,可以对已学过实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习二次函数、可化为一元二次方程的其它高元方程、一元二次不等式等知识的基础。此外,学习一元二次方程对其它学科有重要意义。本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二

2、次方程的概念。一、内容和内容解析 二、 教学目标根据大纲的要求、本节教材的内容和学生已有的知识经验,确定本节课的三维目标:知识与能力目标:(1)继续体会方程是刻画数量关系的一个有效数学模型;(2)理解一元二次方程的概念,一般形式,会将一元二次方程化成一般形式,正确识别一般形式中的项和系数;(3)培养学生观察、类比、归纳的能力。过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念 。情感、态度与价值观:通过数学建模的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识。3、 教学重点与难点要运用一元二次方程

3、解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发 .教学重点:理解一元二次方程的概念,掌握它的一般形式。教学难点:;一元二次方程的概念,正确识别一般式中的项及系数。三、教法、学法:因为学生已经学习了一元一次方程、二元一次方程及相关概念,所以本节课我主要采用启发式、类比法教学.教学中力求体现“问题情景数学模型-概念归纳”的模式。指导学生从具体的问题情景中抽象出数学问题,建立数学方程,从而突破难点。同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力. 四、教学过程设计 1

4、创设情境,引入新知 请同学们阅读本章的章前问题-雕像的黄金分割问题,并回答: 问题1这个方程属于我们学过的某一类方程吗? 师生活动:学生回顾已经学过的方程类型,复习方程的概念,元与次的概念,观察新方程,分析此方程的元与次,尝试为新方程命名 【设计意图】使学生认识到一元二次方程是刻画某些实际问题的模型,体会学习的必要性,在学生已有的知识的体系中合理构建一元二次方程这一新知识 问题2这样的方程在其他实际问题中是否还存在呢?你能再想出一个例子吗? 师生活动:学生思考二次项产生的原因,从熟悉的实际背景中,很有可能从矩形的面积出发,设计情境 【设计意图】让学生从“接受式”的学习方式中走出来,走向对一元二

5、次方程产生的根源的探求,在编制情境的过程中,他们将加深对一元二次方程概念的理解部分学生能够独立解决问题,自己编制情境并列出方程,部分学生可以根据同学给出的情境去列方程,或者阅读课本上的实际问题 2拓宽情境,概括概念 给出课本问题1、问题2的两个实际问题,设未知数,建立方程 问题1如图2111,有一块矩形铁皮,长100cm,宽50cm在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形? 问题2要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天

6、安排4场比赛,你说组织者应邀请多少个队参赛? 教师引导学生思考并回答以下几个问题: 全部比赛共有_场 若设应邀请个队参赛,则每个队要与其他_个队各赛一场,全部比赛共有_场 由此,我们可以列出方程_,化简得_ 问题3这些方程是什么方程? 师生活动:学生将实际问题中的语言转化成数学的符号语言,体会运算关系,寻找等量关系,学习建模将列得的方程化简整理,判断出方程的次数 【设计意图】在学生列出方程后,对所列方程进行整理,并引导学生分析所列方程的特征,同时与一元一次方程相比较,找出两者的区别与联系,并类比一元一次方程的概念来得出一元二次方程的概念。由于一元二次方程的概念是本节的重点,所以在形成概念的过程

7、中主要引导学生积极主动进行自我尝试、自我分析、自我修正、自我反思,让学生真正理解一元二次方程概念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数的最高次数是2.因为任何一个一元一次方程都可以化为 “ax+b=c(a0)的形式,由此类比得出一元二次方程的一般形式为“ax2+bx+c=0(a0)”;并由一元一次方程项及系数的概念联想得出一元二次方程的项及系数的概念. (1)一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程 (2)一元二次方程的一般形式y=ax2+bx+c其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 3

8、辨析应用,加深理解 问题5请你说出一个一元二次方程,和一个不是一元二次方程的方程 师生活动:可以由学生举手回答,也可以随机选择学生回答,调动学生广泛地参与追问学生所举的反例为什么不是一元二次方程?是什么方程? 【设计意图】学生自己举例,应用概念,从正反两个方向强化了对概念的理解,在追问的过程中,帮助学生将已有的方程梳理成比较清晰的知识体系,如下: 开发学生认识的资源,激发学生从不同角度、不同形式去深入理解同一概念,让不同的学生在此过程中获得不同的收获,实现分层教学分层指导的效果 问题6下列方程哪些是一元二次方程? (题略)问题7指出下列方程的二次项、一次项和常数项及它们的系数(题略) 例2将下

9、列方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数: (题略)师生活动:(1)将方程去括号得:,移项,合并同类项得:,其中二次项是,二次项系数是3;一次项是,一次项系数是,常数项是教师应及时分析可能出现的问题(比如系数的符号问题) (2)一元二次方程的一般形式是,过程略 例3关于x的方程y=2xm+6x9,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程? 答案:m=2时此方程为一元二次方程;,m=0时此方程为一元一次方程 【设计意图】在形式比较复杂的方程面前,通过辨析方程的元、次、项看清方程的本质,深化理解,淡化对一元二次方程概念的记忆 4巩固概念,学以致用 教科书第4页:练习 【设计意图】巩固性练习,同时检验一元二次方程概念的掌握情况 5归纳小结,反思提高 (1)本节课我们学习了哪些知识?(2)学习过程中用了哪些数学方法?(3)确定一元二次方程的项及系数时要注意什么?以培养学生的归纳、概括能力。 6布置作业:教科书习题211 -1,2题 五、板书设计: 21。1一元二次方程1概念:只含有一个未知数,并且未知数的最高次数是 例一:2的整式方程叫做一元二次方程 2、一般形式y=ax2+bx+c 例二: 其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项我的说课到此结束,谢谢。 5 / 5

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服