ImageVerifierCode 换一换
格式:DOC , 页数:52 ,大小:551.04KB ,
资源ID:4025379      下载积分:12 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/4025379.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(统计学导论第二版习题详解.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

统计学导论第二版习题详解.doc

1、统计学导论(第二版)习题详解第一章一、判断题一、 判断题1统计学是数学的一个分支。答:错.统计学和数学都是研究数量关系的,两者虽然关系非常密切,但两个学科有不同的性质特点。数学撇开具体的对象,以最一般的形式研究数量的联系和空间形式;而统计学的数据则总是与客观的对象联系在一起。特别是统计学中的应用统计学与各不同领域的实质性学科有着非常密切的联系,是有具体对象的方法论。从研究方法看,数学的研究方法主要是逻辑推理和演绎论证的方法,而统计的方法,本质上是归纳的方法。统计学家特别是应用统计学家则需要深入实际,进行调查或实验去取得数据,研究时不仅要运用统计的方法,而且还要掌握某一专门领域的知识,才能得到有

2、意义的成果.从成果评价标准看,数学注意方法推导的严谨性和正确性。统计学则更加注意方法的适用性和可操作性。2统计学是一门独立的社会科学.答:错.统计学是跨社会科学领域和自然科学领域的多学科性的科学。3 统计学是一门实质性科学。答:错。实质性的科学研究该领域现象的本质关系和变化规律;而统计学则是为研究认识这些关系和规律提供数量分析的方法。4统计学是一门方法论科学。答:对。统计学是有关如何测定、收集和分析反映客观现象总体数量的数据,以帮助人们正确认识客观世界数量规律的方法论科学。5描述统计是用文字和图表对客观世界进行描述。答:错.描述统计是对采集的数据进行登记、审核、整理、归类,在此基础上进一步计算

3、出各种能反映总体数量特征的综合指标,并用图表的形式表示经过归纳分析而得到的各种有用信息。描述统计不仅仅使用文字和图表来描述,更重要的是要利用有关统计指标反映客观事物的数量特征.6对于有限总体不必应用推断统计方法.答:错。一些有限总体,由于各种原因,并不一定都能采用全面调查的方法.例如,某一批电视机是有限总体,要检验其显像管的寿命。不可能每一台都去进行观察和实验,只能应用抽样调查方法。7经济社会统计问题都属于有限总体的问题。答:错。不少社会经济的统计问题属于无限总体。例如要研究消费者的消费倾向,消费者不仅包括现在的消费者而且还包括未来的消费者,因而实际上是一个无限总体。8 理论统计学与应用统计学

4、是两类性质不同的统计学。答:对。理论统计具有通用方法论的性质,而应用统计学则与各不同领域的实质性学科有着非常密切的联系,具有复合型学科和边缘学科的性质。二、单项选择题1。社会经济统计学的研究对象是( A )。A。社会经济现象的数量方面 B。统计工作C。社会经济的内在规律 D.统计方法2.考察全国的工业企业的情况时,以下标志中属于不变标志的有( A ). A。产业分类 B。职工人数 C.劳动生产率 D.所有制3。要考察全国居民的人均住房面积,其统计总体是(A ).A。全国所有居民户 B.全国的住宅 C。各省市自治区 D。某一居民户4。最早使用统计学这一学术用语的是( B)。A。政治算术学派 B.

5、国势学派 C.社会统计学派 D.数理统计学派三、分析问答题1试分析以下几种统计数据所采用的计量尺度属于何种计量尺度:人口、民族、信教人数、进出口总额、经济增长率.答:定类尺度的数学特征是“=”或“,所以只可用来分类,民族就是定类尺度数据,它可以区分为汉、藏、回等民族.定序尺度的数学特征是“”或“”,所以它不但可以分类,还可以反映各类的优劣和顺序,教育程度属于定序尺度。定距尺度的主要数学特征是“+或“,它不但可以排序,还可以用确切的数值反映现象在两方面的差异,所以,人口数、信教人数、进出口总额都是定距尺度数据;定比尺度的主要数学特征是“”或“”,它通常都是相对数或平均数,所以经济增长率是定比尺度

6、数据.2请举一个实例说明品质标志、数量标志、质量指标、数量指标之间有怎样的区别与联系.答:例如考察全国人口的情况,全国所有的人为统计总体,而每个人就是总体单位,每个人都有许多属性和特征,比如民族、性别、文化程度、年龄、身高、体重等,这些就是标志,标志可以分为品质标志和数量标志,性别、民族和文化程度都是品质标志,年龄、身高、体重等则是数量标志;而指标是说明统计总体数量特征的,用以说明全国人口的规模如人口总数等指标就是数量指标,而用以说明全国人口某一方面相对水平的相对量指标和平均量指标如死亡率、出生率等指标就是质量指标,质量指标通常是在数量指标的派生指标。3请举一个实例说明统计总体、样本、单位的含

7、义,并说明三者之间的联系。答:例如考察全国居民人均住房情况,全国所有居民构成统计总体,每一户居民是总体单位,抽查其中5000户,这被调查的5000户居民构成样本。第二章 一、单项选择题1. 统计调查对象是(C).A. 总体各单位标志值 B. 总体单位C。 现象总体 D. 统计指标2。 我国统计调查体系中,作为“主体”的是(A)。A。 经常性抽样调查 B. 必要的统计报表C。 重点调查及估计推算等 D。 周期性普查3。 要对某企业的生产设备的实际生产能力进行调查,则该企业的“生产设备”是(A).A. 调查对象 B. 调查单位 C。 调查项目 D. 报告单位二、多项选择题1。 下面哪些现象适宜采用

8、非全面调查? (A。B。C.D)A. 企业经营管理中出现的新问题 B。 某型号日光灯耐用时数检查C。 平均预期寿命 D。 某地区森林的木材积蓄量2. 抽样调查(A.D)。A. 是一种非全面调查 B. 是一种不连续性的调查C. 可以消除抽样误差 D。 概率抽样应遵循随机原则3. 洛伦茨曲线(A。B。C)。A. 是一种累计曲线 B. 可用于反映财富分布的曲线C. 用以衡量收入分配公平与否 D. 越接近对角线基尼系数越大三、分析判断题1。 有人说抽样调查“以样本资料推断总体数量特征”肯定比全面调查的误差大,你认为呢?答:这种说法不对。从理论上分析,统计上的误差可分为登记性误差、代表性误差和推算误差。

9、无论是全面调查还是抽样调查都会存在登记误差。而代表性误差和推算误差则是抽样调查所固有的。这样,从表面来看,似乎全面调查的准确性一定会高于统计估算。但是,在全面调查的登记误差特别是其中的系统误差相当大,而抽样调查实现了科学化和规范化的场合,后者的误差也有可能小于前者。我国农产量调查中,利用抽样调查资料估算的粮食产量数字的可信程度大于全面报表的可信程度,就是一个很有说服力的事例。2. 过去统计报表在我国统计调查体系中占据统治地位多年,为什么现在要缩小其使用范围? 答:经济体制改革以前,统计报表制度是我国统计调查最主要的方式,它在我国统计调查体系中占据统治地位多年.近年来,随着社会主义市场经济的发展

10、,统计调查单位变动频繁,再加上决策主体和利益主体的多层次化,各方面对统计报表数字真实性的干扰明显增加,从而不仅给报表调查带来不少困难,同时也影响了统计数据的准确性,统计报表的局限性日渐暴露.所以,为适应社会主义市场经济日新月异发展变化的需要,提高统计数据的准确性和时效性,现行的统计调查体系以抽样调查为主体,也就缩小了统计报表制度的使用范围。3。 对足球赛观众按男、女、老、少分为四组以分析观众的结构,这种分组方法合适吗? 答:这种分组方法不合适。统计分组应该遵循“互斥性原则”,本题所示的分组方式违反了“互斥性原则,例如,一观众是少女,若按以上分组,她既可被分在女组,又可被分在少组.4。 以一实例

11、说明统计分组应遵循的原则。答:统计分组必须遵循两个原则:穷尽原则和互斥原则。穷尽原则要求总体中的每一个单位都应有组可归,互斥原则要求总体中的任何一个单位只能归属于某一组,而不能同时归属于几个组。例如,把从业人员按文化程度分组,分为小学毕业、中学毕业(含中专)和大学毕业三组,那么,文盲或识字不多的以及大学以上的学历者则无组可归,这就不符合穷尽原则。应该分为文盲或识字不多、小学毕业、中学毕业(含中专)和大专、大学以及研究生毕业四组,才符合穷尽原则。又如,商场把鞋子分为男鞋、女鞋和童鞋,这就不符合互斥原则,因为童鞋也有男、女鞋之分,一双女童鞋既可归属于童鞋组,又可属于女鞋。可以先按男鞋、女鞋分组,再

12、分别对男鞋、女鞋分为成人鞋和童鞋,形成复合分组,这才符合互斥原则。四、计算题抽样调查某地区50户居民的月人均可支配收入(单位:元)数据资料如下:8869289999469508641050927949852102792897881610009181040854110090086690595489010069269009998861120893900800938864919863981916818946926895967921978821924651850要求:(可利用Excel)(1)试根据上述资料编制次(频)数分布和频率分布数列.(2)编制向上和向下累计频数、频率数列。(3)绘制直方图、折线

13、图、曲线图和向上、向下累计图。(4)根据图形说明居民月人均可支配收入分布的特征.解:(1)编制次(频)数分布和频率分布数列.次数分布表居民户月消费品支出额(元)次(频)数频率()800以下8008508509009009509501 0001 0001 0501 0501 1001 100以上141218841228243616824合计50100.00(2)编制向上和向下累计频数、频率数列。(3)绘制直方图、折线图、曲线图和向上、向下累计图。主要操作步骤:次数和频率分布数列输入到Excel。选定分布数列所在区域,并进入图表向导,在向导第1步中选定“簇状柱形图”类型,单击“完成”,即可绘制出次

14、数和频率的柱形图。将频率柱形图绘制在次坐标轴上,并将其改成折线图。主要操作步骤:在“直方图和折线图”基础上,将频率折线图改为“平滑线散点图”即可。主要操作步骤:将下表数据输入到Excel.组限向上累计向下累计750050800149850545900173395035151000437105047311004821150500选定所输入的数据,并进入图表向导,在向导第1步中选定“无数据点平滑线散点图类型,单击“完成,即可绘制出累计曲线图。(4)曲线图说明居民月人均可支配收入分布呈钟型分布。五、案例分析收集有关统计数据,对我国近年来居民收入分配的状况进行统计分析.答:略第三章一、 单项选择题 1

15、。 由变量数列计算加权算术平均数时,直接体现权数的实质的是( D ). A 总体单位数的多少 B 各组单位数的多少 C各组变量值的大小 D各组频率的大小 2. 若你正在筹划一次聚会,想知道该准备多少瓶饮料,你最希望得到所有客人需要饮料数量的( A ). A 均值 B中位数 C众数 D四分位数 32004年某地区甲、乙两类职工的月平均收入分别为1060和3350元,标准差分别为230和680元,则职工平均收入的代表性( B )。 A甲类较大 B 乙类较大 C两类相同 D 在两类之间缺乏可比性 4假如学生测验成绩记录为优、良、及格和不及格,为了说明全班同学测验成绩的水平高低,其集中趋势的测度( B

16、 )。 A可以采用算术平均数 B 可以采用众数或中位数 C只能采用众数 D 只能采用四分位数 5一组数据呈微偏分布,且知其均值为510,中位数为516,则可推算众数为( A ). A 528 B 526 C 513 D 512 6当分布曲线的峰度系数小于0时,该分布曲线称为( C )。 A 正态曲线 B尖顶曲线 C平顶曲线 D。 U型曲线二、判断分析题1.有人调查了456位足球运动员某年的收入,发现他们的年收入以24.7万元为分布中心,但超过24。7万元的只有121人。试问,这里的24.7万元指的是哪一种集中趋势指标?你认为球员收入分布呈什么形状?为什么?答:均值.呈右偏分布。由于存在极大值,

17、使均值高于中位数和众数,而只有较少的数据高于均值.2.任意一个变量数列都可以计算其算术平均数、中位数和众数,并用以衡量变量的集中趋势吗?答:不是.每个变量数列都可以计算其算术平均数和中位数,但众数的计算和应用是有前提条件的,存在极端值时,用算术平均数测度数据的集中趋势也有局限性。3设一组数据的均值为100,标准差系数为10,四阶中心矩为34800,是否可认为该组数据的分布为正态分布?答:峰度系数,属于尖顶分布。4。某段时间内三类股票投资基金的年平均收益和标准差数据如下表:股票类别平均收益率(%)标准差(%)A5。632。71B6。944。65C8.239。07 根据上表中平均收益和标准差的信息

18、可以得出什么结论?假如你是一个稳健型的投资者,你倾向于购买哪一类投资基金?为什么?答:高收益往往伴随着高风险。稳健型的投资者应倾向于购买A类投资基金,因为其标准差最小,也就是风险最小。5.一般说来,一个城市的住房价格是高度偏态分布的,为了了解房屋价格变化的走势,应该选择住房价格的平均数还是中位数?如果为了确定交易税率,估计相应税收总额,又应该做何种选择?答:为了了解房屋价格变化的走势,宜选择住房价格的中位数来观察,因为均值受极端值影响;如果为了确定交易税率,估计相应税收总额,应利用均值,因为均值才能推算总体有关的总量。6。某企业员工的月薪在1000到4000元之间。现董事会决定给企业全体员工加

19、薪.如果给每个员工增加200元,则: (1)全体员工薪金的均值、中位数和众数将分别增加多少? (2)用极差、四分位差、平均差和方差、标准差分别来衡量员工薪金的差异程度,加薪前后各个变异指标的数值会有什么变化? (3)加薪前后员工薪金分布的偏度和峰度会有无变化? (4)如果每个员工加薪的幅度是各自薪金的5,则上述三个问题的答案又有什么不同?答:(1)都是增加200元。(2)都不变。(3)均无变化。 (4)如果每个员工加薪的幅度是各自薪金的5,则均值、中位数和众数都将增加5;极差、四分位差、平均差和标准差也会相应增加5,方差将增加10。25%;偏度和峰度都不变。三、计算题1.某公司下属两个企业生产

20、同一种产品,其产量和成本资料如下:基期报告期单位成本(元)产量(吨)单位成本(元)产量(吨)甲企业60012006002400乙企业70018007001600试分别计算报告期和基期该公司生产这种产品的总平均成本,并从上述数据说明总平均成本变化的原因。解:基期总平均成本660报告期总平均成本640总平均成本下降的原因是该公司产品的生产结构发生了变化,即成本较低的甲企业产量占比上升而成本较高的乙企业产量占比相应下降所致。2设某校某专业的学生分为甲、乙两个班,各班学生的数学成绩如下:甲班60,79,48,76,67,58,65,78,64,75,76,78,84,48,25,90,98,70,77

21、,78,68,74,95,85,68,80,92,88,73,65,72,74,99,69,72,74,85,67,33,94,57,60,61,78,83,66,77,82,94,55,76,75,80,61乙班91,74,62,72,90,94,76,83,92,85,94,83,77,82,84,60,60,51,60,78,78,80,70,93,84,81,81,82,85,78,80,72,64,41,75,78,61,42,53,92,75,81,81,62,88,79,98,95,60,71,99,53,54,90,60,93 要求:(1)分别计算描述两个班成绩分布特征的各种统

22、计指标,并进行比较分析;(2) 分别绘制两个班成绩分布的箱线图。解:利用EXCEL的“描述统计”可得两个班及全体学生的成绩分布特征的各种统计指标如下表(注:其中方差、标准差、峰度和偏度都是样本统计量)。甲班乙班全部平均72.70476。01874.391中位数74.578.576.5众数786078标准差14。68114.25714。496方差215。53203.25210.13峰度1.6636-0.3050。685偏度-0。83-0。590.699区域745874最小值254125最大值999999求和392642578183观测数54561103. 根据第2小题的数据,试求该专业全部学生的

23、总平均成绩和方差,并利用本题数据验证:分组条件下,总体平均数与各组平均数的关系,以及总体方差与各组方差、组间方差的关系。解:根据总体方差的计算公式可得:;全部学生成绩的方差=2。745总体方差(208.2199)组内方差平均数(205。4749)+组间方差(2。745)4。 根据第2小题的数据,分别编制两个班成绩的组距数列(组距为10),然后由组距数列计算反映数据分布特征的各个指标,并观察与第2题所得到的计算结果是否相同?为什么?解:两个班成绩的组距数列如下表所示:成绩甲班人数(人)乙班人数(人)40以下2040502250-6034607013970-80191480-9081590以上71

24、2合计5456由上述组距数列计算的主要分布特征指标如下表所示:平均成绩方差标准差甲班72。963207。61414.409乙班77.857186.89513.671与第2题所得到的两个班的平均数都不相同,这是因为由组距数列计算时,用组中值代替组平均数,假定组内变量值均匀分布或对称分布,与实际分布情况有出入,所以计算结果是近似值。方差和标准差也与第23题所得到的计算结果不相同,这主要是因为由组距数列计算时,用组中值代替组内各变量值,忽略了组内差异,只考虑了组间差异;此外第2题利用EXCEL的“描述统计得到的方差、标准差是样本统计量,与总体方差、标准差的计算公式有差异。5.某商贸公司从产地收购一批

25、水果,分等级的收购价格和收购金额如下表,试求这批水果的平均收购价格。 水果等级收购单价(元/千克)收购额(元)甲2.0012700乙1.6016640丙1.30 8320合计-37660解: 6。某中学校正在准备给一年级新生定制校服。男生校服分小号、中号和大号三种规格,分别适合于身高在160 cm以下、160168cm之间和168cm以上的男生。已知一年级新生中有1200名男生,估计他们身高的平均数为164cm,标准差为4cm.试由此粗略估算三种规格男生校服应该分别准备多少套(按每人1套计算)?解:身高分布通常为钟形分布,按经验法则近似估计结果如下:规格身高分布范围比重数量(套)小号160以下

26、0。1585190.2190中号160-168均值1标准差0.6830819.6820大号168以上0。1585190。2190合计-1。000012007。平均数和方差一般只能对数值型变量进行计算。但若将是非变量(也称为是非标志)的两种情况分别用1和0来表示,则对是非变量也可以计算其平均数和对应的方差、标准差。试写出有关计算公式。解:用1代表“是”(即具有某种特征),0代表“非(即不具有某种特征)。设总次数为N,1出现次数为N1,频率(N1/N)记为P.由加权公式来不难得出:是非变量的均值=P;方差=P(1-P);标准差=。第四章 一、判断分析题1。设,表示三个随机事件,将下列事件用,表示出

27、来。(1)出现,不出现;(2),都出现,而不出现;(3)所有三个事件都出现;(4)三个事件中至少一个出现;(5)三个事件中至少二个出现;(6)三个事件都不出现;(7)恰有一个事件出现。答:(1);(2);(3);(4);(5);(6);(7)2。以表示随机试验,以表示的基本事件空间.试描绘下列随机试验的基本事件空间和所列事件中所包含的基本事件.(1):对同一目标接连进行三次射击,并观察是否命中;考虑事件:=三次射击恰好命中一次,=三次射击最多命中一次。(2):同时掷两个骰子观察点数和;考虑事件:=点数之和为奇数。答:(1)针对随机试验:对同一目标接连进行三次射击,观察是否命中列举实验结果并写出

28、基本事件空间中不中中不中中不中中不中中不中中不中中不中第一次射击第二次射击第三次射击基本事件空间S=中,中,中 T=中,中,不中 U=中,不中,中 V=中,不中,不中W=不中,中,中 X=不中,中,不中 Y=不中,不中,中 Z=不中,不中,不中事件A:三次射击恰好命中一次事件B:三次射击最多命中一次(2)针对随机试验:同时掷两颗骰子,观察点数和列举实验结果并写出基本事件空间点 数 和(基本事件空间)Sij第 二 颗 骰 子 点 数 j123456第一颗骰子点数i123456723456783456789456789105678910116789101112事件A:点数和为奇数3.抽查4件产品,

29、设表示“至少有一件次品”,表示“次品不少于两件”。问 ,各表示什么事件?答:表示没有次品;表示次品不超过一件。4.在图书馆按书号任选一本书,设表示“选的是数学书”, 表示“选的是中文版”,表示“选的是1990年以后出版的”。问:(1)表示什么事件?(2)表示什么意思?(3)若=,是否意味着馆中所有数学书都不是中文版的?答:(1)表示选的是1990年以前出版的中文版数学书; (2)表示馆中1990年以前出版的书都是中文版的; (3)是。二、计算题1.向三个相邻的军火库掷一个炸弹。三个军火库之间有明显界限,一个炸弹不会同时炸中两个或两个以上的军火库,但一个军火库爆炸必然连锁引起另外两个军火库爆炸.

30、若投中第一军火库的概率是0.025,投中第二军火库以及投中第三军火库的概率都是0.1。求军火库发生爆炸的概率.解:设A、B、C分别表示炸弹炸中第一军火库、第二军火库、第三军火库这三个事件。于是,P(A)=0。025 P(B)=0.1 P(C)=0。1 又以D表示军火库爆炸这一事件,则有,D=A+B+C 其中A、B、C是互不相容事件(一个炸弹不会同时炸中两个或两个以上军火库)P(D)=P(A)+P(B)+P(C)=0.025 + 0。1+ 0。1=0.2252。某厂产品中有4%的废品,100件合格品中有75件一等品。求任取一件产品是一等品的概率。解:事件的记号和关系以A表示一等品,B表示合格品,

31、C表示废品.于是有 =14=96%应用何种公式及理由由知,所求之P(A)可以通过P(AB)得到.而P(AB)应当用乘法公式计算。计算3。某种动物由出生能活到20岁的概率是0。8,由出生能活到25岁的概率是0.4。问现龄20岁的这种动物活到25岁的概率为何?解:设A表示这种动物活到20岁、B表示这种动物活到25岁。BA B=ABP(B|A)=0。54。在记有1,2,3,4,5五个数字的卡片上,第一次任取一个且不放回,第二次再在余下的四个数字中任取一个。求:(1)第一次取到奇数卡片的概率:(2)第二次取到奇数卡片的概率;(3)两次都取到奇数卡片的概率。解:以A表示第一次取到奇数卡片,B表示第二次取

32、到奇数卡片。(1)由古典概型,显然有(2)第二次取到奇数卡片是第一次取到奇数卡片且第二次取到奇数卡片与第一次未取到奇数卡片但第二次取到奇数卡片这两个事件的和事件.即,并且显然和不相容。应用不相容事件的加法公式,再应用乘法公式,有(3)两次都取到奇数卡片,也就是A、B都发生。由乘法公式,有5.两台车床加工同样的零件。第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍。求任意取出的零件是合格品的概率。 解:设 B1=第一台车床的产品;B2=第二台车床的产品;A=合格品。则 P(B1)= P(B2)= P(AB1)

33、=1-0。03=0.97 P(A|B2)=1-0.02=0。98由全概率公式得: P(A)= P(B1)* P(AB1)+ P(B2) P(AB2)=*0.97+0。98=0。9736。 有两个口袋,甲袋中盛有2个白球1个黑球,乙袋中盛有1个白球2个黑球。由甲袋中任取一球放入乙袋,再从乙袋中取出一球。问取得白球的概率是多少? 解:事件的记号和关系从甲袋中任取一球放入乙袋,以表示所取为白球,以表示所取为黑球;然后从乙袋中任取一球,以表示所取为白球。于是有, 应用何种公式及理由由于+=1,并且和已知,因而可以用全概率公式计算。计算7. 在第5题中,如果任意取出的零件是废品,求它属于第二台车床所加工

34、零件的概率.解:设 B1=第一台车床的产品;B2=第二台车床的产品;A=废品.则 P(B1)= P(B2)= P(AB1)=0。03 P(AB2)=0.02P(B2 A)=0。258。发报台分别以概率0。6及0。4发出信号“”及“由于通讯系统受到干扰,当发出信号 “”时,收报台以概率0.8及0.2收到信号“”及“”;当发出信号“”时,收报台以概率0。9及0。1收到信号“-及“”。求:(1)当收报台收到信号“时,发报台确实发出信号“”的概率;(2)当收报台收到信号“时,发报台确实发出信号“-”的概率。解:事件的记号和关系发报台发出信号,以、分别表示它发出的是“”、是“”;收报台收到信号,以、分别

35、表示它收到的是“、是“”。于是有,=0.8,=0。2=0。1,=0.9应用何种公式及理由所要求的是条件概率和.由于已经知道了先验概率和,且+=1;还知道了在和的条件下发生的概率(从而可求),以及在和的条件下发生的概率(从而可求).因此可用贝叶斯公式来计算后验条件概率和.计算9。设某运动员投篮投中概率为0。3,试写出一次投篮投中次数的概率分布表。若该运动员在不变的条件下重复投篮5次,试写出投中次数的概率分布表。解:(1)一次投篮投中次数的概率分布表X=xi01P(X=xi)0.70.3(2)重复投篮5次,投中次数的概率分布表X=xi012345P(X=xi)0.168070.360150.308

36、700.132300.028350.0024310。随机变量X服从标准正态分布N(0,1).查表计算:P(0.3X1。8);P(2X2);P(3X3);P(3X1。2) .解:11.随机变量X服从正态分布N(1720,2822)。试计算:P(1400X1600);P(1600X1800);P(2000X)。解:P(1400X1600)=()-()= 0.2044P(1600X1800)=()()= 0。2767P(2000X)=()()=0。1611=0.2044=0。2767=0。161112.若随机变量X服从自由度等于5的分布,求P(3X11)的近似数值;若X服从自由度等于10的分布,求P

37、(33.169);若X服从自由度为5的t 分布,求P(X2。571)。解:15。同时掷两颗骰子一次,求出现点数和的数学期望和方差。解:X=xi23456789101112P(X=xi)E(X)=2*+3*+4+5+6+7+8+9*+10*+11*+12=7V(X)=+*+*+*+=5。83316.已知100个产品中有10个次品。现从中不放回简单随机抽取5次.求抽到次品数目的数学期望和方差。解:概率函数抽到次品的数目(记做X)服从超几何分布 (m = 0,1,2,n )在本题中,N=100,M=10,n=5,代入上式得令m = 0,1,2,3,4,5,分别代入上式,算出相应的概率,列成下列概率分

38、布表00.58310。34020.07030.0074近似为05近似为0数学期望和方差根据上面的分布列,计算X的数学期望和方差00。5830010.3400.3400。34020。0700.1400。28030。0070.0210。0634近似为0005近似为000合 计10。5010.68317.假设接受一批产品时,用放回方式进行随机抽检,每次抽取1件,抽取次数是产品总数的一半。若不合格产品不超过2,则接收。假设该批产品共100件,其中有5件不合格品,试计算该批产品经检验被接受的概率.解:+=0。0769+0。2025=0。2794三、证明题1。如果事件在一次试验中发生的概率是,不发生的概率

39、是,+=1。试证明在次独立重复试验中该事件出现次数的数学期望是,方差是。证:因于是2。随机变量独立,并且服从同一分布,数学期望为,方差。求这个随机变量的简单算术平均数的数学期望和方差。证:3。随机变量独立,并且服从同一分布,数学期望为,方差为。这个随机变量的简单算术平均数为.求的方差.证:第五章 一、选择题(可选多项)1以下属于概率抽样的有( B、C ). A.网民自由参加的网上调查 B。体育彩票摇奖 C。按随机原则组织的农产量调查 D.街头随意的采访2样本统计量的标准差与抽样极限误差间的关系是(D )。A。样本统计量的标准差大于极限误差B.样本统计量的标准差等于极限误差C。样本统计量的标准差

40、小于极限误差D。样本统计量的标准差可能大于、等于或小于极限误差3在其它条件不变的情况下,如果重复抽样的极限误差缩小为原来的二分之一,则样本容量( A )。A。扩大为原来的4倍 B。 扩大为原来的2倍C.缩小为原来的二分之一 D. 缩小为原来的四分之一4当样本单位数充分大时,样本估计量充分地靠近总体指标的可能性趋于1,称为抽样估计的( B ).A。无偏性 B.一致性 C。有效性 D.充分性5抽样估计的误差( A、C )。A。是不可避免要产生的 B.是可以通过改进调查方法消除的C。是可以事先计算的 D。只有调查结束之后才能计算二、计算题1根据长期实验,飞机的最大飞行速度服从正态分布.现对某新型飞机

41、进行了15次试飞,测得各次试飞时的最大飞行速度(米/秒)为:422。2 417。2 425。6 425.8 423.1418。7 428。2 438。3 434。0 412。3431。5 413.5 441.3 423.0 420。3试对该飞机最大飞行速度的数学期望值进行区间估计(置信概率0。95)。解: 样本平均数 =425=2.1448=2。14482。1916=4.7005所求的置信区间为:425-4.7005425+4.7005,即(420.2995,429.7005)。2自动车床加工某种零件,零件的长度服从正态分布。现在加工过程中抽取16件,测得长度值(单位:毫米)为:12。14 12。12 12。01 12。28 12.09 12.16 12.03 12。0112.06 12。13 12.07 12。11 12。08 12.01 12.03 12。06试对该车床加工该种零件长度值的数学期望进行区间估计(置信概率0.95).解:因为零件长度服从正态分布, 95置信区间为:其中 , ,,即: 3用同样方式掷某骰子600次,各

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服