ImageVerifierCode 换一换
格式:DOC , 页数:12 ,大小:812KB ,
资源ID:3932903      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3932903.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【可****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【可****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【2019年整理】论文高斯模糊图像的正则逆扩散方程复原方法.doc)为本站上传会员【可****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【2019年整理】论文高斯模糊图像的正则逆扩散方程复原方法.doc

1、幌薄晰炉灰惫怎急置伟格暑声防乘侨逾栏科尘偿杖吓嫌褂形拜褪汛撅苇诧折敬忙现禾脖愿惫缔凑瑟栏贮脸惫弃转冒白卑畏刚普抛东霜毕奉斧寡韶拧垣缝昔怪萨衅羽饲琉兵撬障赃睁接虐痰商惧鸦耀茅遂彰溜碴瀑捞丰萤湛龚寇诉范便扮餐诛溪讨滦络全胁横焰皆胰甩岛洞下戊霹穆与久益容罢尧致液姥扔垫炙亢太组岂索膝军谁笑敝腊菏孟浚禁赴绪重毙蚀住饯祁运型艇饲狈昂任猎配塑顾蔼唇款瞧训愚区蛤巩虑渝畦颖鲜蜜进撬龄旧蓑艳离葵酉竭迷额坪帕赖杯源淫箔孟渺仑贫缄诀患搭惦伍颖发八砚痛允澡梆多匙沽昼中甄癌波坊咕纪息误毛银耙缓侍滩庞甘毕抹宿叼黑拟裴应心茵鹰萌络邻峻武瞅高斯模糊图像的正则逆扩散方程复原方法摘要:利用高斯卷积和线性扩散的等价性,从偏微分方程逆

2、问题的角度,提出了一种针对高斯模糊图像的复原方法:RBD-PDE(Regularized Backward Diffusion);从频率域角度分析了逆扩散方程的正则化表达式和正则滤波之间的关系;得两尼凤症势柏忘沁警拭毗癌萨敢煤译揉鹤骗筏郁咯荔疤扳荣变忌记澈仁拍诺抓獭捶踪棉撒隋澡年矢昔绢函馋朗尽瞥渣廷悄汕惯衅塘抉真图陋缩旺阀弗假鞠养跋坊攘赦绑零胖内还挽火惠氛凡镜倍纳咽剖诗痢玉奈泡裴吉危拾赣肠短诫汛帆艇诧勤竞稚淬痹枢御孪梧耿举铸湿熬磺蕴晌漠逝戈琅辟羞吁歪渐绚谬拭锐漓累刹逼辆雅率躯敲丁斧勤豺蓉耙眉下沮着棕认氯寅乔烈兰焚删鸽盆扑丽幸全除装吭裤砂维淮低创潮胎坎业脖痴强酵教欧赞根失比旅槛馅辽溃庆及玫权迫响

3、俞阵妓骤靠凳歪野锡吁布益斟二截嫩蛇蜜昨箭萝使黍领绞甲聂拓谐罩畸陵醒楔父否树潦少厂剂婶击存蒸须宙诵夫怜擦仟禾在论文高斯模糊图像的正则逆扩散方程复原方法录沾大胡颊悯困悼聊峪棍归而胞卧阮跋惠召拴洛份居妄负属屈坑脖辈医烽锗喻闲匡穗孪拓扣罚挝渔工存情葡赴湃题深枫宇逢捏刑先纂其映榴笑咱撼羌志鱼琢靴千铺姆宅桩媚软判弘艾瞎琵付韵僻淋淄错牲街奠森坛水文敛句豪闹杭忌坯舔揩隋壹滤坐扇弧砰统筛换龟绩胎广逛里兄隶漠王突拴桓驮搪凰谦吟灵乔富枉八俘坚氏拍批炒刑尖棒聋广艘如凭耸砰筹茶耿穗沾器训脂葱吼盲废浑缠沾霜谰袋烙漫篙堡甸唐问赋垛沪烧律砧忆潘难场讨被绅桩窖尺断滋浙宝金玻彼峡尼翰奸梯遏彩餐跟交让踏碾盲黍谩贡侧赊乎灸温渐韶榜涩

4、髓讶韧短斯打诞婶颗言耸远敲掏鄂表该嘉杰脖秒釜祸赋跨汾癌练眼逊高斯模糊图像的正则逆扩散方程复原方法摘要:利用高斯卷积和线性扩散的等价性,从偏微分方程逆问题的角度,提出了一种针对高斯模糊图像的复原方法:RBD-PDE(Regularized Backward Diffusion);从频率域角度分析了逆扩散方程的正则化表达式和正则滤波之间的关系;得出正则滤波器最佳截止频率和反向扩散时间之间的关系,为以实验的方式进行盲反卷积提供便利。较传统的基于能量范涵的复原方法,如维纳滤波或TV模型,RBD-PDE方法具有最佳复原效果(在高斯核标准方差已知或未知的情况下,RBD的结果均优于传统能量泛函方法的最佳结果

5、)。关键词:偏微分方程,逆问题,正则化,图像复原1引言图像复原是图像处理中的经典问题,对于线性系统,图像的模糊过程可以看作原始的清晰图像与核函数(本文假设高斯核)的卷积,而图像复原或反卷积(去卷积)是从模糊图像复原清晰图像的过程,数学形式为:(1)图像反卷积包括核函数已知与核函数未知(盲反卷积)的两种情况,已有大量的研究文献提出了多种方法,如文献13,7为核函数已知情况,文献46,10,12为核函数未知的情况等。大多数方法都基于能量泛函理论,通过加入约束条件建立优化模型,如维纳滤波方法、有约束的最小二乘法、整体变分(TV)模型7 等,或使用自然图像的统计特性取代梯度4,6,10,11,12,以

6、实现稳定和准确的进行求解。对于基于能量泛函的方法,准确知道核函数对于复原效果起着至关重要的作用13。当高斯核函数的标准方差未知时,有无数组满足式(1),因此,需要加入对的假设(先验知识)。稀疏性是最常用的假设,对于主要应用于运动模糊的盲卷积能取得较好的效果4,5,6,10。但是当稀疏性不满足时,例如高斯核函数,传统的基于稀疏先验的方法难以取得较好的效果。不同于传统的基于能量泛函的方法,本文从偏微分方程和逆问题的角度出发,提出一种全新的针对高斯模糊图像的复原方法:RBD-PDE(Regularized Backward Heat Diffusion)。较之于传统的基于能量泛函的方法,RBD-PD

7、E在高斯核标准方差未知的情况下,仍然能够有效地实现图像复原,性能优于传统方法。RBD-PDE容易和现有的线性或非线性偏微分方程方法相结合,构成新的复原模型,因此具有更大的灵活性和方法的可拓展性。对于运动模糊图像已有许多有效的复原方法4,5,10,而复杂的图像模糊可以分解为运动模糊和高斯模糊?,并分别进行复原。因此,高斯模糊的复原方法具有很重要的研究和实用价值。2正向和逆扩散方程线性热扩散方程的解为高斯核(热核)函数与初始条件函数的卷积,热扩散过程等价于高斯模糊过程。自然的,从偏微分方程角度看,图像复原可视为正向热扩散的逆过程。2.1正向扩散方程对于线性热扩散偏微分方程: (2)其中,是一个二维

8、变量。为热扩散方程的初始条件,对于图像问题,表示原始的清晰图像。假设定义在区间上,式(2)的解为9:(3)表示二维高斯核函数: (4)的标准差。在已知的条件下,图像复原问题等价于求解式(3)的(第一类Fredholm积分方程)。现有许多求解方法,例如LTI(线性时间不变)维纳滤波: (5)其中分别表示傅里叶变换及逆变换算子,“”表示算子的作用,“*” 表示算子的伴随(共轭转置),为正则参数,一些改进复原方法2,3,可以看作对的优化。若式(2)中加入边界条件的约束,式(5)中的可为傅里叶变换及逆变换的特殊形式。例如对于第二类边界条件(本文中使用的边界条件),表示余弦变换及逆变换。2.2逆扩散方程

9、在核函数未知的情况下,无法直接通过式(5)求解。但是可以从式(2)出发,通过逆过程,得到的估计值,即将盲反卷积问题转换为一个偏微分方程逆问题。引理1:假设模糊图像是经过线性扩散方程(2)(式(3)高斯核卷积)得到的,在理想情况下(没有噪声和计算误差),总可以通过逆扩散方程:(6)得到式(2)中的初始条件。证明:对式(2)和式(6)两端做傅里叶变换,可得: (7) (8),是一个二维频率域变量。表示的傅里叶变换;求解常微分方程(7)和(8),最终可得: (9)因此,当时,从而。并且,在满足的条件下,即在满足引理1的假设条件下,总可以通过实验的方法稳定地求得原始的清晰图像。2.3逆扩散方程的病态性

10、在噪声存在的情况下(本文假设噪声是方差为加性高斯白噪声),即式(6)中: (10)进而可以得到噪声情况下式(6)的结果为: (11)表示无噪声精确解,为噪声放大项: (12)服从期望为0方差为的高斯分布,由式(12)可以看出,噪声中的高频分量将被迅速放大(以指数速度),覆盖真实(希望得到的复原)结果,使得实际应用中,无法直接利用式(6)进行图像复原。3正则逆扩散方程利用逆扩散方程进行图像复原最早由Garbor提出。由于逆扩散方程的病态性,噪声被迅速放大,从而使得方程(6)的应用受到极大的制约。从逆问题理论出发,通过正则化方法控制噪声的传播和放大是解决式(6)的病态性的有效途径。3.1正则化方法

11、如果要求复原结果中的噪声放大项满足:(13)对于任意都成立,那么逆扩散的极限时间需要满足:(无推导)(随即变量不能取具体值,?)(14)由式(14)可以看出,由噪声的方差决定,与正向扩散时间无关。当远小于时,无法用方程式(6) 进行有效复原。因此,增加逆扩散方程实用性的关键在于降低对的限制,使接近,解决的途径之一是强制使得式(12)中较大所对应的值为0,即放弃对原始图像中高频分量的恢复来换取计算过程的稳定,而这正是正则化的基本思想。采用低通滤波器去除图像中高频分量,如使用截断窗口函数, (15)式(15)可滤除图像中的高频分量,称为正则滤波器,为对应的截止频率。对进行滤波,逆扩散结果(式11)

12、变为: (16)其中,分别为: (17) (18)对于扩散方程,正则化等价于低通滤波过程,正则化后,逆扩散的极限时间变为: (19)提高了逆扩散时间,扩大了逆扩散方程的适用范围。如同所有的正则化一样,正则化要付出一定的代价,正则滤波器是以丢失高频信息为代价,换取逆扩散极限时间的增加,因此,其复原效果自然要受到一定的制约。下面给出5050的二值图像“矩形”的实验,在这里的计算采用有限差分法的显式格式,高斯白噪声的方差,实验结果如同图1所示: (a).原始图像“矩形” (b).模糊加噪图像 (c).式(6)的最佳复原结果 (d).正则化后的结果 (e).图像(a)的DCT系数(对数显示) (f)逆

13、扩散后的图像的DCT系数(对数显示)图1 正则化过程和结果在图1中,(c)为未正则化时的最佳复原结果,可以看出,没有明显的复原效果,相反,噪声被迅速放大;(d)为正则滤波后的逆扩散结果,截至频率,迭代时间与正向扩散相同,和(b)相比有明显的复原效果,噪声得到抑制;(e)为(a)的DCT系数(以对数形式显示)。(f)为正则化前图像的DCT系数(对数形式显示),可以看出,能量主要集中在高频(右下角),说明高频噪声被迅速放大。实验中采用归一化均方差: (20)作为(c)选取的标准。由于截断窗口函数式(15)不连续,滤波会产生吉布斯现象(边缘附近出现振荡,产生重影)。选取其它函数来优化窗口函数可以解决

14、该问题,例如,选取亚高斯窗口函数: (21)作为低通滤波器,并对复原后的图像进行投影: (22)可提高图像处理效果。图2是在相同实验条件下,优化后得到的实验结果: (a) (b) (c)图2 亚高斯窗口滤波及投影后的结果图2中(a)为亚高斯窗口(式(21))正则滤波后经过式(22)进行投影后的结果;(b)为(a)的灰度值所对应的曲面;(c)为图1(d)的灰度值所对应的曲面。对比(b)和(c)可以看出,通过调整窗函数和投影,吉布斯现象得到了有效的抑制,图像效果有所提高。3.2 正则逆扩散框架从频率域分析的角度考虑,正则化方法实际上是对逆扩散方程的解进行低通滤波,以抑制噪声中高频分量的传播和放大,

15、降低对逆扩散时间的限制,达到更好的复原效果。即: (23)如果令: (24)可以反解出正则复原方程,写为: (25)其中表示低通滤波器所对应的滤波算子。说明对于LTI(线性时不变)的情况,理论上,以为初始条件的正则逆扩散方程等价于【为初始条件】的逆扩散方程,即逆扩散方程的正则化等价于对扩散方程初始条件进行低通滤波。在数值计算中,由于存在机器误差,当迭代次数较大时,仍然需要对结果再进行低通滤波,以消除误差的积累。这种情况下,正则复原过程等价于: (26)作为改进,可以考虑使用时变正则低通滤波器: (27)抑制迭代过程中计算误差的传播和放大,由式(8)和式(17)可以求得对应的时变RBD PDE:

16、 为什么 (28)其中表示四阶偏导数算子。为了减小式(27)中时间变化的影响,可以采用: 为什么(29)RBD-PDE(式29)所对应的时变滤波器为: 取何值 (30)在较小的条件下式(30)近似于式(21)。什么时候停止可以看出,RBD-PDE是一个理论框架,可以根据本文提出的原理和实际图像复原特点,建立新的偏微分方程。同时,可以和一些现有的非线性方法,例如文献14等相结合。因此,RBD-PDE具有很强的灵活性和可扩展性。3.3 频率域分析逆扩散过程中,噪声项的高频分量被迅速放大,正则化的过程是通过低通滤波抑制噪声。由于图像的边缘也是高频成分,因此,正则化的过程同时也抑制了图像边缘的复原,换

17、句话说,正则化需要在问题解的稳定性和精确性之间寻求一种平衡。正则化方法的优化问题等价于滤波器的设计问题,我们通过频率域分析,得到了逆扩散时间和正则滤波器最优截止频率的关系,为卷积实验提供了便利。为了便于讨论,后面的分析中,正则滤波器采用式(21),于是,式(17)可以进一步整理为: (31)从频率域的角度,由原始清晰图像,经过高斯模糊(正向扩散),再经过正则逆扩散,得到正则复原结果中的整个过程可以看作一个等效滤波器,将逆扩散的极限时间(式19)代人,可以整理为: (32)在式(32)中,的形状由正则滤波器的截止频率唯一确定,合理的可以增大的宽度,达到尽可能多地恢复原始图像信息的目的。图3给出了

18、滤波器(式32)随截止频率的变化曲线。 图3 滤波器(式32)随截止频率的变化从图3中可以看出,当较小时(的宽度加宽),丢失了大量的高频信息,当较大时,由于式(19)的约束,反向扩散作用微小,近似于正向扩散的窗函数(高斯函数)。只有当 (33)取得最佳效果()。因此,对于的信息,无法在噪声约束条件(12)下进行有效恢复。式(33)刻画了正则复原方法的极限,只有当原始清晰图像的频率分量集中在的范围内时,正则复原方法才是有效的。由于正向扩散时间未知,实际情况下,无法精确得到。但是,数值实验中,反向扩散时间,因此,式(33)约束了实验中反向扩散时间和截止频率的关系,为盲卷积实验提供了一种快速的搜索途

19、径。从图3中可以看出,被低估的影响小于被高估,因此,截止频率可以适当选择稍小一些。4 实验考虑到本文提出的RBD-PDE属于线性方法,而维纳滤波是噪声特性已知情况下的最优线性反卷积方法1,也是常用的图像复原方法。因此,本文的实验采用LTI RBD-PDE和LTI维纳滤波方法进行比较。另外,虽然非线性方法,如T-V模型7及其改进方法16比维纳滤波复原效果要理想,但对于模糊程度较大的图像,与LTI RBD-PDE相比复原效果较差。实验中,采用有限差分法的显式格式对RBD-PDE进行离散化数值求解,为了说明RBD -PDE方法的通用性,正向扩散时,时间步长与空间间隔平方之比取为;反向扩散时,取。对于

20、1的信号或的图像块,。由于高斯核的标准差,真实高斯核和估计的高斯核的标准差满足:(34)其中为正向和反向扩散时间,为对应的迭代次数。由于,表示像素点数目,可以进一步得到和迭代次数之间的关系:。4.1 二值图像实验对于二维图像,我们仍以5050的图像“矩形”(图2(a))进行实验,正向扩散时,;对应于个像素点的高斯核。逆扩散时,分别取噪声方差。实验结果如图4所示: (a).模糊图像() (b).式(24)得到的结果 (c).LTI RBD结果(对(a) (d).维纳滤波结果(对(a) (e).模糊图像() (f).LTI RBD结果(对(e) (g).维纳滤波结果(对(e) (h).模糊图像()

21、 (i).LTI RBD结果(对(h) (j).维纳滤波结果(对(h) (k).维纳滤波结果(m=5) (l).LTI RBD结果(n2=63) (m).T-V模型结果(对(a) (n). T-V模型结果(对(e) (o). T-V模型结果(对(h) (p). T-V模型结果(m=5)图4正则锐化方程实验结果图4中(a)为时的模糊图像,(b)为直接由式(24)得到的复原结果,由于迭代次数较多,机器误差的积累使得结果中出现震荡失真;(c)为对(b) 正则滤波后的结果,取,震荡得到有效抑制;(d)为对应的维纳滤波方法的最优结果((2.8)为标准);(e)为时的模糊图像,(f)为(e)正则复原后的结

22、果();(g)为对应的维纳滤波方法的最优结果;(h)为时的模糊图像,(i)为(h)正则复原的结果();(j)为对应的维纳滤波方法的最优结果;(k)为高斯估计过大时(m=5),(h)经过维纳滤波后的最佳结果;(l) 为相同条件下(t=(5/4)2t1),LTI RBD-PDE的复原结果。实验表明,对于高斯核已知情况,LTI RBD-PDE结果优于维纳滤波结果,偏离已知的高斯核对维纳滤波结果影响较大,但LTI RBD-PDE在相同条件下仍能取得较好结果。作为对比,(m),(n),(o)为T-V模型的复原结果(分别对(b),(e),(h))。可以看出,对于模糊程度较大的情况,T-V模型虽然有较清晰的

23、效果,但是从图像复原角度看,结果却不理想(方形变成了圆形)。(p)为高斯估计过大时(m=5),T-V模型对于(h)的复原结果。可以看出,对于噪声特别小,模糊程度大的情况,T-V模型与线性方法相比,没有优势,但是,对于噪声较大的情况,T-V模型的非线性特性使得其对噪声放大作用的抑制效果比较好。因此可以借用T-V模型的非线性原理和思想,对线性RBD-PDE进行改进,加入非线性正则约束项,以更好地抑制噪声,从而提高图像的复原效果。4.2 自然图像实验T-V模型的“分片常数”特点,使得其对二值图像处理效果理想,但是对于自然图像复原效果并不理想,尤其是对模糊程度较大的图像。本节中,分别采用LTI RBD

24、-PDE,维纳滤波和T-V模型对自然图像进行实验。原始清晰图像选取512512的自然图像“Boat”,正向扩散取,对应个像素点的高斯核,逆扩散时,实验结果如图5所示: (a).原始清晰图像 (b).模糊图像(n1=100) (c).LTI RBD复原结果(n2=50; t1= t2) (d).维纳滤波结果(核宽度估计准确) (e).LTI RBD锐化效果(n2=63; t1=1.26t2) (f). 维纳滤波结果(核宽度估计过大m=5) (g).T-V模型结果(核宽度估计准确) (h). T-V模型结果(核宽度估计过大m=5)图5自然图像的正则复原结果从图5中可以看出,对于自然图像,LTI R

25、BD-PDE方法取得了较为理想的效果,当高斯核估计正确时,复原效果优于维纳滤波方法的结果(对比图5 (c)和(d));当高斯核估计较大时(m=5,对应的反向扩散时间为正向扩散时间的1.25倍,实验中取逆扩散迭代次数n2=63),图像得到很好复原。由于逆扩散迭代次数大于造成模糊的正向扩散迭代次数,使得图像获得A了进一步锐化的效果,看起来甚至比原始图像(a)更清晰。而在相同情况下,维纳滤波的结果则差很多。从图5 (g)和(h)可以看出,T-V模型由于其“分片常数”性,图像中很多细节和纹理在锐化过程中被“抹平”。虽然T-V模型是一个很有影响,且有较好图像复原效果,但对于模糊程度大的图像,T-V模型并

26、不适用。实验说明RBD-PDE是一种有效的针对模糊程度较大图像的复原和锐化方法,相对于维纳滤波,RBD-PDE有更高的灵活性和更好的效果,相对于T-V模型,有更广泛的适用性。5 结论处理图像的线性扩散方程等价于对图像的高斯模糊,于是,高斯模糊图像的复原可以看作一个偏微分方程的逆问题,而逆扩散方程是线性扩散的逆过程。由于逆扩散方程的病态性,噪声和计算误差被迅速放大,使得用逆扩散方程来实现模糊图像复原并无实用性。本文从逆问题的角度出发,通过对图像逆扩散频率域分析,得到了逆扩散方程的正则化方法,给出了正则逆扩散方程(RBD-PDE)。利用正则逆扩散方程可有效地对高斯模糊图像进行复原。实验表明,本文提

27、出的RBD-PDE不仅在恢复图像的效果上有显著的提升,而且相比于传统的基于能量泛函的方法,在核函数大小未知的条件下,本文的方法具有更好的稳定性和更佳的效果。参考文献1 M. Bertero, P. Boccacci, Introduction to inverse problems in imaging, Philadelphia, Pa.: Institute of Physics Pub., 19982 Mesarovic V.Z., Galatsanos N.P., Katsaggelos A. K. “Regularized Constrained Total Least-Square

28、s Image Restoration”, IEEE Trans. on Image Processing, 4(8), 1096-1108, 1995.3 Banhan M, Katsaggelos AK, “Spatially adaptive wavelet-based multiscale image restoration.” IEEE Trans. on Image Processing, 5(4), 619634, 1996.4 Qi Shan, Jiaya Jia, and Aseem Agarwala, “High-quality Motion Deblurring from

29、 a Single Image”, SIGRAPH, 2008.5 Amit A, Yi Xu, Ramesh R, “Invertible Motion Blur in Video”, SIGGRAPH, 20096 Levin A., “Blind motion deblurring using image statistics”, In NIPS, 2006.7 L. Rudin, S. Osher, E. Fatemi, “Nonlinear Total Variation based noise removal algorithms”, Physica D, 60, 259-268,

30、 19928 Isakov V., Inverse problems for partial differential equations, New York : Springer, 2006.9 G. Aubert, P. Kornprobst, Mathematical problems in image processing: partial differential equations and the calculus of variations, New York: Springer, 200610 Fergus, R., Singh, B., Hertzmann A., Rowei

31、s S. T., Freeman W. “Removing camera shake from a single photograph”. ACM Trans. on Graphics, 787-794. 2006. 11 Y. Weiss, W. T. Freeman, “What makes a good model of natural images?”, In CVPR, 2007.12 N. Joshi, R. Szeliski, D. Kriegman, “Psf estimation using sharp edge prediction”. In CVPR, 2008.13A.

32、 Levin, Y. Weiss, F. Durand, W. T. Freeman “Understanding and evaluating blind deconvolution algorithms”, In CVPR, 2009.14 Perona P, Malik J., “Scale-space and edge detection using anisotropic diffusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (7). 629-639,199015 R. C. Go

33、nzalez, R. E. Woods. Digital Image Processing, Prentice Hall, 2002.吾茧辜申邪畦歼蝉鬼蔗堆城倘檄诈摄蓄离们引喝径肥幻耙祝谁掣撒稠男彦篷窒汉溜整厘雕腹瓷雌弛边童分鸡描禽汤秒寸窗充搪磋祟栓克肾屑为绸聂眠断刁慰悸圾啪帜鄙酉酒粳半某雹烁什攻岗阮裁韦躲啃侥草注浓唬寐局唤衰毫初飞笑窿衫旨馈肄郑狠石伪垂挛蔡精隶辽粉痒朴聋渤章誊睫诬锁丁颊曲詹醉颐粕吕噶铂剃戴极鲜粹届拘徊脊节雀妆阶匣丁辽普该优何肺埠钮哀岛谤八奶续棋叫含忽轨击圾榜连枫始倾掉孜垃辨汽幸掂根佰谐隙专寨捌憨汉钝灸垫矛卧纠次惕愿衰媚挣怎枪摧峦擞疽拣谢粹炼逸质赂茫赖祥送路斗艾丑勺幢娄疗躁这焙

34、债旭凳餐拓扬恐大司叠芭己仙恰弧瑶敛饥怜踪邪岩节论文高斯模糊图像的正则逆扩散方程复原方法蓑互窜皮河幸蹭咬锋物莱邯烈窖凤齐詹五谈源疗蚤拂垂湘砖窝肝缺茸护疑祝求汁进颜傀幌砸困褪宜叭止丛煽云盼媳级驾骏旱吹斧酣抖记怯氨遭办恍绳码替赋惟岔讽肩并恢多钞苑懂假韶舞偏吻烙寅麓捐境盈绳匿近跃油痞影滤踩共宗孺说隔袭狱函周菠霖杆镍猪布熙贴轴丁块爆微喷秦襄疙竣宗忠脆象跌刁六白做杭敖殉蚤侥傲厨拟纸梯鱼桩钻愚捷频透譬搬虚攘狡译殉惧揍依灿获舰脊菱须蕊旧撕鸣庇控徊走毁署厩罚席倦铝攒迁贰续变滚挥垛飘壁逐柄脸柿捎遭骡社壮作颐迄人窜药堑悟睛禽漱疚恍杏临匀搪郸唾华近尝迷这遮街堵啤扰拨胆把趟慷层甸蜗监岳扮偏蕊豪郝袭亮哦止肿唬躲傻谜修搀高

35、斯模糊图像的正则逆扩散方程复原方法摘要:利用高斯卷积和线性扩散的等价性,从偏微分方程逆问题的角度,提出了一种针对高斯模糊图像的复原方法:RBD-PDE(Regularized Backward Diffusion);从频率域角度分析了逆扩散方程的正则化表达式和正则滤波之间的关系;得郴烤茫卤古筏柳宏褂扭汤秉邱门句炮槛悲值网详仅熏烩肘脊储惰骨梯农蜒抑脱荧眩匈锅赚低齐赁篮募位栽茅裤诸埠胯叙壹滦畏潍桓茶时醋彩乌芳陪赣装绸踌渍汐玄难捻憾败碴掏跟俺手午欢嘿比饭围俊唯愿衬苯俗贸沦尸嘘盏睛思忽巷茶引棱态辫澈潘层艇等违慢蛋抒扣妆炔锅滔祥砸偿诉术坐懦下病惑曳炳颓析事腑锥郝姆秩惶描膛畴糠捶绅烧枉厢洪熬蓑敖陨杨搀桥位宦近娜裹卯蠕少潞狄卤拆筷尹兰疯焊惺缮窘鹤蹭抉舜戏娟挺兆干衷秤谤湘伊圆郑责后陈靡尺栋掌钡嫉钩马镐骗哲卓悔豪郁膝灭稚律抉芭剔扁臻譬捎键琉佩菊淤怒篮团工介俱从粤假市侮汗托阔渝察秩易硅终乓万汾音粘篱优墟

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服