ImageVerifierCode 换一换
格式:DOC , 页数:4 ,大小:15.50KB ,
资源ID:3918251      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3918251.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(显示积分和隐式积分法资料.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

显示积分和隐式积分法资料.doc

1、显示积分和隐式积分法精品资料这是ansys里面的两种求解方法。大多数非线性动力学问题一般多是采用显式求解方法,特别是在求解大型结构的瞬时高度非线性问题时,显示求解方法有明显的优越性。下面先简要对比一下隐式求解法和显示求解法。动态问题涉及到时间域的数值积分方法问题。在80年代中期以前,人们基本上采用纽曼法进行时间域的积分。根据纽曼法,位移、速度和加速度有着如下关系: u(i+1)=u(i)+t*v(i)(12p)a(i)+2p*a(i+1) (1) v(i+1)=V(i)+t(1-2q)a(i)+2qa(i+1) (2) 上面式子中 u(i+1),u(i)分别为当前时刻和前一时刻的位移,v(i+

2、1)和V(i)为当前时刻和前一时刻的速度,a(i+1)和a(i)为当前时刻和前一时刻的加速度,p和q为两个待定参数,t为当前时刻与前一时刻的时问差,符号 * 为乘号。由式(1)和式(2)可知,在纽曼法中任一时刻的位移、速度、加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解,这个求解过程必须通过迭代和求解联立方程组才能实现。这就是通常所说的隐式求解法。隐式求解法可能遇到两个问题。一是迭代过程不一定收敛,二是联立方程组可能出现病态而无确定的解。隐式求解法最大的优点是它具有无条件稳定性,即时间步长可以任意大。 如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度

3、和加速度关系式: u(i+1)=2u(i)-u(i-1)+a(i)(t)2 (3) v(i+1)=u(i+1)-u(i-1)2(t) (4)式中u(i-1),为i-1时刻的位移。由式(3)可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动过程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它既没有收敛性问题,也不需要求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。隐式求解法不考虑惯性效应C和M。对于线性问题,无条

4、件稳定,可以用大的时间步。对于非线性问题,通过一系列线性逼近(Newton-Raphson)来求解;要求转置非线性刚度矩阵K,收敛时候需要小的时间步,对于高度非线性问题无法保证收敛。因此,隐式求解一般用于线性分析和非线性结构静动力分析,包括结构固有频率和振型计算。 ansys使用的Newmark时间积分法即为隐式求解法。 显示求解法是ansys/ls-dyna中主要的求解方法,用于分析大变形、瞬态问题、非线性动力学问题等。对于非线性分析,显示求解法有一些基本的特点,如:块质量矩阵需要简单的转置;方程非耦合,可以直接求解;无须转置刚度矩阵,所有的非线性问题(包括接触)都包含在内力矢量中;内力计算

5、是主要的计算部分;无效收敛检查;保存稳定状态需要小的时间步。(此处我也不是很理解,仅供你参考)。弄清楚了隐式和显示求解法后,简单说一下单点积分和全积分。ansys作为一种有限单元法,它是一种离散化的数值解法。有限单元法中,每一单元的特性用单元刚度矩阵来表示,每一结构构件的力与位移之间的关系不是精确推导出来的,而是利用每一单元中近似的位移函数得到节点位移,然后计算积分点应变和应力,输出时才根据用户请求将积分点结果复制或线性外推至单元的节点上。因此,有限单元法是一种近似的数值方法。先看一下积分点的概念:计算刚度矩阵需要进行数值积分,Ansys采用高斯积分法,即采用各积分点处函数值与积分系数乘积之和

6、,因此积分点也称高斯积分点。积分点位置的确定比较复杂,它是勒让德多项式Ln(x)的n个不同的实根,即需要求解勒让德多项式。对于面、体单元,在积分点处计算单元结果也比较精确。由此可知,积分点与节点完全不同,不同单元积分点位置也不一样,个别梁单元也没有积分点。Gauss 积分阶数低于被积函数所有项次精确积分所需阶数的积分称为缩减积分,简单地说就是数值积分采用比精确积分要求少的积分点数。实际计算表明,采用缩减积分往往可以取得较完全精确积分更好的精度。因此,所谓单点积分和全积分实际上指的是高斯积分时所采用的积分点的个数。这样说来,单点积分和全积分与显示求解法和隐式求解法没有本质的联系。只不过,在显示动

7、力分析中最消耗CPU的一项就是单元的处理。由于积分点的个数与CPU时间成正比,采用简化积分的单元便可以极大的节省数据存储量和运算次数,进而提高运算效率。除节省CPU外,单点积分单元在大变形分析中同样有效,ansys/ls-dyna单元能承受比标准ansys隐式单元更大的变形。因此,每种显示动力单元确省为单点积分。但单点积分有两个缺点:1.出现零能模型(沙漏模态);2.应力结果精确度与积分点相关。为了控制沙漏,可以采用全积分单元。总结一下,显示求解法、隐式求解法与单点积分、全积分不是一个层次上的概念。我们在求解问题的时候应先根据我们的问题类型来决定是采用显示求解法还是隐式求解法。如果是采用显示求解法,默认是单点积分,如果产生了沙漏,改用全积分。仅供学习与交流,如有侵权请联系网站删除 谢谢4

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服