ImageVerifierCode 换一换
格式:DOC , 页数:22 ,大小:1.18MB ,
资源ID:3917469      下载积分:10 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3917469.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(工程力学公式教程文件.doc)为本站上传会员【精****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

工程力学公式教程文件.doc

1、工程力学公式精品资料工程力学公式大全第一章:力矩 用符号MO(F)表示。即 力矩矢量 描述力的转动效应力矩矢量的模描述转动效应的大小,它等于力的大小与矩心到力作用线的垂直距离(力臂)的乘积,即q为矢径r与力F之间的夹角。 平面力系的合力对平面上任一点之矩等于力系中所有的力对同一点之矩的代数和或者简写成 力偶矩第二章:一主矢:有任意多个力所组成的力系(F1,F2Fn),的矢量和:二主矩:力系中所有的力对同一点O之矩的矢量和用表示:空间任意汇交系在oxyz坐标中投影表达式:对于空间任意力系 主矩的分量表达式为 第三章 静力学平衡问题平面一般力系的平衡方程:其他形式:(1)(2)空间力系的平衡条件:

2、力系的主矢和对任一点的主矩均为零 第四章:正应力切应力QzFQyMxxzxy dAFP1FP2yxz正应变)(直角改变量bag+=剪应变胡克定律式中,E和G为材料有关的弹性常数:E为弹性模量或杨氏模量;G为切变模量。第五章总结公式:1.正确画出轴力图,计算出各个截面的轴力2.注意拉压变形以及拉压产生的正应力和切应力其中 最大正应力发生在垂直于轴线处=p=0cos 最大切应力发生在与轴线成45角时 = p= 根据胡克定律=E得 拉压变形 l= (其中EA为拉压刚度) =b/b 泊松比 =-强度校核 max 同时 拉压变形满足叠加原理。可以通过拉压变形建立变形协调方程,解决拉压静不定问题第六章:作

3、用于构件的外扭矩与机器的转速、功率有关。在传动轴计算中,通常给出传动功率P和转速n,则传动轴所受的外加扭力矩Me可用下式计算: 如果功率P的单位用马力(1马力=735.5 Nm/s),则剪切胡克定律当在弹性范围内加载时,剪应力与剪应变成正比:式中 GIP扭转刚度; IP横截面的极惯性矩。对于直径为 d 的实心圆截面对于内、外直径分别为d 和 D 的圆环截面受扭圆轴的强度设计准则 第八章1.弹性范围内的挠度曲线在一点的曲率在这一点处横截面上的弯矩、弯曲刚度之间关系:EI-横截面的弯曲刚度2. 梁在弯曲变形后,横截面的位置将发生改变,这种位置的改变称为位移(displacement)。梁的位移包括

4、三部分:1)横截面形心沿水平方向的位移,称为轴向位移或水平位移(horizontal displacement),用u表示。2)横截面形心处的铅垂位移,称为挠度(deflection),用w表示;3)变形后的横截面相对于变形前位置绕中性轴转过的角度,称为转角(slope),用q表示;在Oxw坐标系中,挠度与转角存在下列关系: 在小变形条件下,挠度曲线较为平坦,即q很小,因而上式中tanqq。于是有小挠度微分方程 力学中的曲率公式数学中的曲率公式M2dw1232dxdw12dxw2d+=EIMx2d对于等截面梁,应用确定弯矩方程的方法,写出弯矩方程M(x),代入上式后,分别对x作不定积分,得到包

5、含积分常数的挠度方程与转角方程: 第九章:9-2.平面应力状态中任意方向面上正应力与切应力的表达式:9-3.平面应力状态的三个主应力:将三个主应力的代数值由大到小顺序排列切应力有两个极值,二者大小相等,正负号相反,其中一个为极大值,另一个为极小值,其数值由下式确定:一点应力状态中的最大切应力,为下述三者中的最大者9-5.平面应力状态下的广义胡克定律:同一种各向同性材料弹性常数间的关系:体积改变能密度微元的畸变能密度9-6.第一强度理论应力状态发生脆性断裂的失效判据:相应的设计准则(强度条件):第二强度理论应力状态发生脆性断裂的失效判据:相应的设计准则(强度条件):第三强度理论应力状态发生屈服时

6、的失效判据:相应的设计准则:(强度条件)第四强度理论任意应力状态发生屈服时的失效判据相应的设计准则(强度条件)9-2.平面应力状态中任意方向面上正应力与切应力的表达式:二.9-3.平面应力状态的三个主应力:将三个主应力的代数值由大到小顺序排列切应力有两个极值,二者大小相等,正负号相反,其中一个为极大值,另一个为极小值,其数值由下式确定:一点应力状态中的最大切应力,为下述三者中的最大者9-5.平面应力状态下的广义胡克定律:同一种各向同性材料弹性常数间的关系:体积改变能密度微元的畸变能密度9-6.第一强度理论应力状态发生脆性断裂的失效判据:相应的设计准则(强度条件):第二强度理论应力状态发生脆性断

7、裂的失效判据:相应的设计准则(强度条件):第三强度理论应力状态发生屈服时的失效判据:相应的设计准则:(强度条件)第四强度理论任意应力状态发生屈服时的失效判据相应的设计准则(强度条件)第十一章细长杆件承受轴向压缩载荷作用时,将会由于平衡的不稳定性而发生失效,这种失效称为稳定性失效(failure by lost stability),又称为屈曲失效(failure by buckling)。 当压缩载荷大于一定的数值时,在任意微小的外界扰动下,压杆都要由直线的平衡构形转变为弯曲的平衡构形,这一过程称为屈曲(buckling)或失稳(lost stability)。稳定的平衡构形与不稳定的平衡构形

8、之间的分界点称为临界点(critical point)。临界点所对应的载荷称为临界载荷(critical load),用FP表示。 精确的非线性理论分析结果表明,细长压杆在临界点以及临界点以后的平衡状态都是稳定的。欧拉公式 ml为不同压杆屈曲后挠曲线上正弦半波的长度,称为有效长度(effective lengthm为反映不同支承影响的系数,称为长度系数(coefficient of 1ength),可由屈曲后的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度的比值确定。 两端铰支 一端自由, 一端铰支, 两端固定 m1.0 一端固定 一端固定 m0.5 m2.0 m0.7 注:临界载荷公式只

9、有在压杆的微弯曲状态下仍然处于弹性状态时才是成立的。 长细比是综合反映压杆长度、约束条件、截面尺寸和截面形状对压杆临界载荷影响的量,用l表示,由下式确定: 其中,i 为压杆横截面的惯性半径,由下式确定:AIi=长细比反映了压杆长度、支承条件以及压杆横截面几何尺寸对压杆承载能力的综合影响。用长细比表示的细长杆临界应力公式 细长杆长细比l大于或等于某个极限值lp时,压杆将发生弹性屈曲。长中杆长细比l小于lp,但大于或等于另一个极限值ls时,压杆也会发生屈曲。其中a和b为与材料有关的常数,单位为MPa。 粗短杆长细比l小于极限值ls时,压杆不会发生屈曲,但将会发生屈服。临界应力总图(figures of critical stresses) (细长杆)(中长杆)(粗短杆)令细长杆的临界应力等于材料的比例极限(图中的B点),得到 若令中长杆的临界应力等于屈服强度(图中的A点),得到 仅供学习与交流,如有侵权请联系网站删除 谢谢22

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服