ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:157KB ,
资源ID:3865583      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3865583.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文((8)-离散型随机变量的均值与方差-、正态分布学习资料.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

(8)-离散型随机变量的均值与方差-、正态分布学习资料.doc

1、(8) 离散型随机变量的均值与方差 、正态分布精品文档第九节 离散型随机变量的均值与方差 、正态分布1样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为()X101P A. B. C. D22已知X的分布列为,设Y2X3,则E(Y)的值为() A. B4 C1 D178910Px0.10.3y3某射手射击所得环数的分布列如下:已知的期望E()8.9,则y的值为_A0.4 B0.6 C0.7 D0.94设随机变量XB(n,p),且E(X)1.6,D(X)1.28,则()An8,p0.2 Bn4,p0.4Cn5,p0.32 Dn7,p0.455随机变量的概率分布列

2、由下表给出:78910P0.30.350.20.15该随机变量的均值是_凡诺学堂专题训练一方差期望典题导入【例1】A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1和B1A2和B2A3和B3现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y(1)求X,Y的分布列;(2)求E(X),E(Y)审题视点 首先理解X,Y的取值对应的事件的意义,再求X,Y取每个值的概率,列成分布列的形式,最后根据期望的定义求期望以题试法变式:本

3、着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算)有甲、乙两人相互独立来该租车点租车骑游(各租一车一次)设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四小时(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量,求的分布列及数学期望E()凡诺学堂专题训练二方差期望计算典题导入【例2】设随机变量X具有分布P(Xk),k1,2,3,4,5,求E(X2)2,D(2X1),.以题试法变式

4、: 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4)现从袋中任取一球,X表示所取球的标号(1)求X的分布列、期望和方差;(2)若aXb,E()1,D()11,试求a,b的值凡诺学堂专题训练三分布列典题导入X15678P0.4ab0.1【例3】某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X3为标准B.已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准(1)已知甲厂产品的等级系数X1的概率分布列如下所示:且X1的数学期望E(X1)6

5、,求a,b的值;(2)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:353385563463475348538343447567用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由以题试法变式:某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为和(

6、1)(1)如果把10万元投资甲项目,用X表示投资收益(收益回收资金投资资金),求X的概率分布及E(X);(2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求的取值范围1设有一正态总体,它的概率密度曲线是函数f(x)的图象,且f(x)e,则这个正态总体的平均数与标准差分别是()A10与8 B10与2 C8与10 D2与102已知随机变量服从正态分布N(2,2),且P(4)0.8,则P(02)等于()A0.6 B0.4 C0.3 D0.23已知随机变量X服从正态分布N(3,1),且P(2X4)0.682 6,则P(X4)等于()A0.158 8 B0.158 7 C0.158

7、6 D0.158 54已知随机变量X服从正态分布N(0,2),若P(X2)0.023,则P(2X2)等于()A0.477 B0.628 C0.954 D0.9775设随机变量X服从正态分布N(2,9),若P(Xc1)P(Xc1),则c等于()A1 B2 C3 D46.已知随机变量的分布列为210123Pmn其中m,n0,1),且E(),则m,n的值分别为_7有10件产品,其中3件是次品,从中任取两件,若X表示取到次品的个数,则E(X)等于_8.甲、乙两架轰炸机对同一地面目标进行轰炸,甲机投弹一次命中目标的概率为,乙机投弹一次命中目标的概率为,两机投弹互不影响,每机各投弹两次,两次投弹之间互不影

8、响(1)若至少两次投弹命中才能摧毁这个地面目标,求目标被摧毁的概率;(2)记目标被命中的次数为随机变量,求的分布列和数学期望9.以下茎叶图记录了甲、乙两组各四名同学的植树棵数乙组记录中有一个数据模糊,无法确认,在图中以X表示(1)如果X8,求乙组同学植树棵数的平均数和方差;(2)如果X9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望10.设XN(1,22),试求 (1)P(1X3) (2)P(3X5) (3)P(X5)将所求概率转化到(,(2,2或3,3上的概率,并利用正态密度曲线的对称性求解1. 随机变量服从正态分布N(1,2),已知P(0)0.3,则P(2)_.2.工厂制造的某机械零件尺寸X服从正态分布N,问在一次正常的试验中,取1 000个零件时,不属于区间(3,5这个尺寸范围的零件大约有多少个?收集于网络,如有侵权请联系管理员删除

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服