ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:32.40KB ,
资源ID:3847346      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3847346.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(探究电费大数据分析与风险预警.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

探究电费大数据分析与风险预警.docx

1、 探究电费大数据分析与风险预警 余长江+张海荣摘要:随着中国市场经济的发展和电力市场化改革的推进,供电企业的发展面临着新的机遇与挑战。但长期以来,电费回收与风险管控一直是供电企业管理的重要环节,通过电费大数据分析,可以对有价值的电费数据进行综合分析,并能及时发现电费回收业务过程中的难点及高风险用户,然后按照“一户一策”形成完整有效的解决方案,为电费回收管理提供辅助决策支持,从而提高电费回收率,防范电费风险。关键词:大数据;电费回收;风险预警:TP311 :A :1009-3044(2016)33-0023-02大数据分析是继云计算、物联网之后IT产业又一次颠覆性的技术变革,电费回收工作也是供电

2、企业核心环节。通过大数据与电费数据的有效结合和综合分析,使得电费回收工作在过程管控中得到强有力的支撑。在信息时代的大潮中,如何通过有价值的数据分析,使其为供电企业决策和供电企业发展服务,是大数据的核心作用,也是供电企业营销平台建立后累计的数据管理和数据分析的明确方向。1 电费回收与风险管控存在的问题1.1 国家产业结构调整,增大电费回收风险随着国家产业结构调整,在不断推进淘汰落后产能和化解过剩产能的进程中,对钢铁、水泥等行业的冲击不言而喻。相反此类企业在全社会用电量占据了举足轻重的地位,在此类企业不断兼并重组,优化产业结构未完成阶段,企业的经营能力和盈利能力不断减弱,自2015年起,以承兑汇票

3、方式支付电费的比例不断提高,拖欠电费的现象屡见不鲜,造成电力企业电费回收压力增大,电费风险不断升高。1.2 电费回收管理体制的不完善目前电费回收管理主要还是电力企业与电力用户之间的博弈,一方面缺乏有力的法律配套文件,另一方面电力企业没有紧密结合国家政策进行供给和需求环节的全面分析,没有建立经济链条中资金流向的闭环监管,没有建立关联企业、社会群体及利益集团之间的回收体系,没有有效的管控手段及社会化约束机制,多维度提升电力用户拖欠电费所付出的成本。从而在经济下行压力明显的改革浪潮中,电力企业耗费巨大的人、财、务开展电费回收工作,无形中降低了企业的生产力。1.3 电费回收管理行为不规范电力企业在电费

4、回收的管理中由于缺乏完善的制度建设和标准建设,导致管理混乱,没有统一的模式可供参考。在电费催缴过程中,对于欠费用户的催缴行为方式不统一,催费力度不强,导致催费不具有执行力,拖欠电费惩罚标准没有的充分应用和执行,导致用户形成拖延的习惯,这一点尤其是在一些落后的欠发达地区比较严重。由于这一地区通讯网络技术并不发达,电费回收时仍然需要工作人员进行抄表,而在抄表过程中非常容易出现漏抄或者是将电费占为己有的现象,这也造成用户对供电公司发生不满而拒绝缴纳电费,这样就形成了一种恶性循环,如果供电公司不通过恰当的方式解决这一问题,势必将会严重损坏供电公司的形象,进而对于电费的回收工作造成严重阻碍。1.4 电费

5、回收工作智能化水平不强当今社会正处在信息化水平高速发展的阶段,大数据分析时代已经来临,可进一步实现信息资源共享,从而消除信息不对称形成的供需矛盾,满足不同的利益群体提供不同的需求。电力企业信息资源融合程度不足,未实现电力用户缴纳电费行为分析,未充分应用智能化、自动化手段实现用户用电信息的实时告知和预警,从而导致催费不及时,治理无依据的被动局面。1.5 电费回收观念未完全转变“先缴费 、后用电 ”的用电观念未能完全转变。电作为社会重要的消费品之一,以一种商品的形式存在,但是由于电看不见摸不着,以及起初电力走向市场留下的“先用电,后付费”的习惯,深刻影响着人们对用电的消费观念。一方面随着电力全面走

6、向市场,电是商品的观念已经慢慢转变,但是电力企业没有建立长效机制,持续引导人们对电是一种商品的认可;另一方面很多政府部门、事业单位收到计划经济及会计核算制度上的约束,未能为广大消费群体起到标榜作用,阻碍了“先缴费 、后用电 ”的用电观念转变。进而导致电力用户只要用电,电力企业就存在电费风险的局面。2 大数据分析在电费回收中的应用2.1 应收电费情况分析根据电费结算业务数据要求,通过相关实时结算电费情况输出,将大量数据按各类需求进行提取、汇总、计算,并以各种形式进行汇总展现。参照用电客户发行的相关数据为分析条件,对上月及去年同期的应收电费进行比较,再结合用电客户当前预收余额,分析出应发户数、实发

7、户数、应发金额、同比、环比及各种占比情况,以及足额冲抵的用户和不足额冲抵的用户情况,综合分析出潜在的欠费用电客户,提前做好催费工作。每日针对用电量大的用户进行综合分析,对高压用户进行专项分析,通过对应收电费数据、预收电费数据、预收余额数据、实收电费数据等进行数据整合,综合数据抽取,分析出足额冲抵的用户和不足额冲抵的用户情况分析结果。同时将以时间作为分界分成两类情况进行专项分析。其一,依托用电客户上月发行的电费情况,结合目前用电客户的预收余额数据,分析出足额冲抵的用户和不足额冲抵的用户情况,从而确定存在定量差额的用户(每个供电公司可根据本地区实际情况对各等级阀值进行调整,去设定定量差额),建立预

8、警机制,提前做好催费工作。其二,通过本月用电客户发行前的电费情况(当期已算费,但还未发行确定的,并且已形成的算费记录),结合用电客户当前的预收余额数据,分析出足额冲抵的用户和不足额冲抵的用户情况。以各类有价值的电费数据为条件,对当期应收计费值进行比对,再结合用电客户当前的预收余额数据,分析出应发金额与预收金额之间的差额关系与差值,建立预警机制,提前做好催费工作。2.2 欠费情况分析依托每日用电客户发行数据,对已经形成欠费的用电客户进行全面分析。以欠费用电客户的相关电费数据为分析条件,通过欠费情况进行专项分析,细化账龄,合理划分客户信用情况,对用电量,欠费金额、欠费次数、欠费时间等等进行量化分析

9、,重点分析和跟踪欠费金额达10万元以上的用电客户的欠费情况及按照欠费金额大小顺序的排名情况。结合预收余额的数据分析,发现可能欠费的用电企业,建立预警机制,及时采取有效措施,减少欠费的产生。尽可能地加大电费回收工作的目的性和有效性,大大提高工作效率。找出各种明显和潜在的电费回收风险,明确主要风险,密切注意原有风险的变化,通过以上分析更有效的做好因地制宜的催费方案,最大可能防范欠费风险,變事后追缴为事前监控、管理。 2.3 在途电费资金到账分析对在途电费资金情况进行实时监控,通过对实收金额,预收金额,资金在途状态,资金在途时间,结算方式及缴费方式等综合分析,展示出电费资金未达账情况,并按照未达资金

10、的大小进行排序,重点分析和跟踪资金在途时间超过十天的用电客户,发现差异,查明未达账原因,做好未达账原因分析,做好电费资金全过程管控措施,确保资金及时到账。2.4 电费回收情况分析电费回收情况的大数据分析,是依托用电客户实时发生的应收、实收、预收、预收余额及欠费数据的分析,实时展示其电费回收情况,能进一步了解和掌握电费回收情况,以每个供电单位为准,依据当期电费数据,反映当期电费的同比、环比的回收率,并且按时电费回收率的大小排序进行综合排名。同时参照上月电费情况与同期电费情况,对偏差用户进行分析比对,为电费回收提供参考。2.5 付费购电情况分析针对高压用户进行应收、实收、预收及欠费数据进行每日专项

11、分析,结合月累计付费购电比重与年度累计付费购电比重,通过对高压用电客户的电费数据进行多维度分析,并且参照上月用电信息与去年同期数据进行比对,对偏差用户进行分析整改,为电费回收提供参考和预警。针对低压用户进行应收情况、实收情况、预收情况及欠费情况进行每日汇总分析,结合数据抽取进行多维护分析。参照上月用电信息,去年同期数据信息,结合月累计付费购电比重及年度累计付费购电比重进行比对,通过付费购电用户完成率与付费购电电费完成率,累计付费购电用户完成率与累计付费购电电费完成率,更好的展现付费购电沟通情况,降低电费回收风险。2.6 重要用户的经营状况分析和风险评估依托供电企业提供的重要用户名单或者按照发行

12、电量达一定量的用电客户(各地(市)供电单位电费管理部门可根据本地区实际情况对量值进行调整),对应收电费数据、实收电费数据、预收电费数据、欠费数据、电费回收情况及付费购电情况进行综合分析,再结合重要用户的经营状况分析,进行风险评估,预防风险、积极管控,采取管控措施,确保电费颗粒归仓。2.7 用电客户电费风险评级用电客户电费风险评级标准由供电企业确定,各地(市)供电单位电费管理部门可根据本地区实际情况对各等级阀值进行调整。各供电公司必须根据统一标准确定用电客户电费风险的高低程度,通过对供电电压等级,电费结算方式,电费额度占比,缴费情况,生产经营状况,信用程度,用电行为,欠费情况,供用电合同情况、用

13、电主体等各种因素从高到低依次划分为A、B、C、D、E五个级别,分别对应“极高风险”、“高风险”、“一般风险”、“低风险”、“极低风险”。依据供电电压等级和费控方式作为用电客户电费风险等级的最主要考量因素对用电客户电费进行风险评级。并根据风险程度高低采取差异化的电费回收措施,便于突出重点,降低电费回收潜在风险。2.8 高风险用户电费回收“一户一案”根据供电企业用电客户中的高风险客户,一对一制定电费风险防范方案,确保电费“颗粒归仓”。根据用电客户电费风险评级分级情况,针对A类用户即极高风险用户,进行专项分析。重点从用户基本信息、生产用电情况、债权债务情况、电费风险分析、行业前景、生产经营、偿债能力

14、、履约能力、已采取措施和拟采取的措施等进行逐户评审,依据对供电电压等级,电费结算方式,电费额度占比,缴费情况,生产经营状况,信用程度,用电行为情况进行多维度,多口径评估,同时对信用污点(发生过违约用电、恶意欠费、被国家执法机关处理,其中包括最高法院、中国人民银行、地市级及以上信用评级机构公布的失信名单中的客户,负主要责任的经济纠纷、因不法行为被起诉等各种失信行为),缴费记录不良情况,陈欠电费、每月应收电费额度等情况进行监控,实行“一户一案”,专人专项密切关注客户的生产经营动态,资金回笼情况,对风险等级不同的用户分别制定电费风险控制策略,做好电费风险防范措施。3 结束语根据日、月、年的应收发行情

15、况、预收缴费情况、付费购电情况、欠费情况以及国民经济发展情况等大数据分析,以日报、月报及年报等多种类的分析结果展现形式,再通过按行业分类、用电类别研究居民、非居、工商、大工业等用户电费回收的规律和趋势,发现高风险用户并对其风险评级,从而制定措施防范电费风险。通过大数据分析结果,结合供电企业不断完善的管理方法,如召开电费回收风险分析会,分析客户电量变化、缴费时间、缴费方式、缴费能力等方面的综合情况,及时采取应对措施,制定大客户电费回收风险管控措施,超前防范电费风险,变事后追缴为事前管理进一步提供电费回收预警机制,将电费回收预警处理纳入电费回收日常管理工作中。目前,供电企业将要面临越来越严峻的电费

16、回收形势,通过大数据的分析与应用,以“一户一策”为抓手,上下协同、群策群力,一定会实现电费回收管理和综合管理能力的全面提升。参考文献:1 乔科华.用电稽查管理工作的几点思考J.中国新技术新产品,2010(12): 130-132.2 陳可钰.电力营销稽查监控体系的建设和实践J.农电管理,2013(5): 86-88.3 张国良.探讨电网企业用电稽查工作存在的问题及对策J.硅谷,2010(18): 46-47.4 郭霞.营销管理信息数字化系统设计方案探J.内蒙古科技与经济,2012(7): 55-57.5 王春生,彭建春. 配电网线损分析与管理系统的研制J.中国电力,1999(9).6 朱振青,房朝阳,丁永福,等.配电网线损的实用计算J.中国电力,1997(2).7 杜松怀.电力市场M.北京:中国电力出版社,2004:130-138.8 王广庆.电力销售与管理M.北京:中国电力出版社,2002:35-39.9 赵振.一种自适应海量存储系统组织策略及关键技术研究D.武汉: 华中科技大学,2006.10 任崇广.面向海量数据处理领域的云计算及其关键技术研究D.南京: 南京理工大学,2013.11 罗东健.大规模存储系统高可靠性关键技术研究D.武汉:华中科技大学,2011. -全文完-

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服