ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:685.27KB ,
资源ID:3841830      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3841830.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(福建省泉州五校2021届高三联考数学(理)试卷-Word版含答案.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

福建省泉州五校2021届高三联考数学(理)试卷-Word版含答案.docx

1、2022年秋季南侨中学、永春三中、永春侨中、荷山中学、南安三中高中毕业班摸底统一考试第I卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出分四个选项中,只有一项是符合题目要求的。1. 已知集合则为( )A B C D 2假如复数为纯虚数,那么实数的值为( )A2B1C2D1或 2 3. 在中,若,则的面积( )A 、 B、 C、 D、4下列命题中,真命题是( )A BC D5. 函数的大致图像是( ) A B C 1.99345.16.121.54.047.51218.016在某种新型材料的研制中,试验人员获得了右边一组试验数据:现预备用下列四个函数中的一个

2、近似地表示这些数据的规律,其中最接近的一个是( )A. B. C. D. 7若、是互不相同的空间直线,、是不重合的平面,则下列结论正确的是( )A B C D8. 如图过拋物线y22px(p0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|2|BF|,且|AF|3,则拋物线的方程为()AB C D9. 设为实系数三次多项式函数已知五个方程式的相异实根个数如下表所述方程式相异实根的个数13311关于的微小值试问下列哪一个选项是正确的( )A. B. C. D.10. 将一圆的六个等分点分成两组相间的三点它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星如图所示的正六角星是以

3、原点为中心其中分别为原点到两个顶点的向量若将原点到正六角星12个顶点的向量都写成为的形式则的最大值为( ) A. 2 B. 3 C. 4 D. 5 第卷(非选择题共100分)二、 填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。11 某三棱锥的三视图如图所示, 该三棱锥的 体积是 . 12. 已知两个单位向量,的夹角为30,.若,则正实数=_13. 若变量x,y满足约束条件且z5yx的最大值为a,最小值为b,则ab的值是_14、函数的图象恒过定点,若点在直线mx+ny+2=0上,其中,则的最小值为 15、2008年高考福建省理科数学第11题是:“双曲线()的两个焦点为

4、、,若为其上一点,且,则双曲线离心率的取值范围为:A(1,3);B(1,3;C(3,+);D3,+)”其正确选项是B。若将其中的条件“”更换为“,且”,试经过合情推理,得出双曲线离心率的取值范围是 三、解答题(本大题共6小题,共80分,解答题写出必要的文字说明、推演步骤。)16.(本小题满分13分)已知向量, ,设函数(1)求函数的单调增区间;(2)已知锐角的三个内角分别为若,边,求边17.(本小题满分13分)已知等差数列的各项均为正数,其前项和为,为等比数列, ,且()求与;()证明.18. (本小题满分13分)C1B1A1CBA如图,在三棱柱中,是边长为的正方形,平面平面,.(1)求证:平

5、面;(2)求二面角的余弦值;(3)证明:在线段上存在点,使得, 并求的值。 19.(本小题满分13分)设椭圆E: (a,b0),短轴长为4,离心率为,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,求出该圆的方程,若不存在说明理由。20.(本小题满分14分)已知函数()争辩函数在定义域内的极值点的个数;()若函数在处取得极值,且对,恒成立,求实数的取值范围;()当且时,试比较的大小21. 本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,假如多做,则按所做的前两题计分,做答时,先

6、用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换二阶矩阵M对应的变换T将点(2,2)与(4,2)分别变换成点(2,2)与(0,4)求矩阵M;设直线l在变换T作用下得到了直线m:xy6,求l的方程(2) (本小题满分7分)选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合若曲线的方程为,曲线的参数方程为() 将的方程化为直角坐标方程;()若点为上的动点,为上的动点,求的最小值(3) (本小题满分7分)选修4-5:不等式选讲已知函数f(x)| x+3|x2|.求不等式f(x)3的解集;若f

7、(x) |a4|有解,求a的取值范围2022年秋季南侨中学、永春三中、永春侨中、荷山中学、南安三中高中毕业班摸底统一考试答题卡一、选择题(本大题共10小题,共50分。)题号12345678910答案二、填空题(本大题共5小题,共20分。)11、 12、 13、 14、 15、 三、解答题(本大题共6小题,共80分,解答题写出必要的文字说明、推演步骤。)16.17.C1B1A1CBA18.19.20.21.2022年秋季南侨中学、永春三中、永春侨中、荷山中学、南安三中高中毕业班摸底统一考试答案第I卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出分四个选项中,

8、只有一项是符合题目要求的。1. 已知集合则为( )A B C D 解析:=,选C.2假如复数为纯虚数,那么实数的值为( )A2B1C2D1或 2 解析: 即 ,故选择答案A3. 在中,若,则的面积( )A 、 B、 C、 D、解析:改编自2022福建理科高考12题,考查三角形的解法和面积公式,答案C4下列命题中,真命题是( )A BC D解析:答案为D5. 函数的大致图像是( ) A B C 解析:该函数为偶函数,答案为B1.99345.16.121.54.047.51218.016在某种新型材料的研制中,试验人员获得了右边一组试验数据:现预备用下列四个函数中的一个近似地表示这些数据的规律,其

9、中最接近的一个是( )B. B. C. C. D. 解析:由该表供应的信息知,该模拟函数在应为增函数,故排解D,将、4代入选项A、B、C易得B最接近,故答案应选B.7若、是互不相同的空间直线,、是不重合的平面,则下列结论正确的是( )A B C D解析:对于A,或 异面,所以错误;对于B, 与 可能相交可能平行,所以错误;对于C, 与 还可能异面或相交,所以错误.故答案应选D8. 如图过拋物线y22px(p0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|2|BF|,且|AF|3,则拋物线的方程为()AB C D【答案】B解析:如图分别过点A,B作准线的垂线,分别交准线于点E,D,

10、设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故BCD=30,在直角三角形ACE中,|AF|=3,|AC|=3+3a,2|AE|=|AC|3+3a=6,从而得a=1,BDFG,,求得p=,因此抛物线方程为y2=3x9. 设为实系数三次多项式函数已知五个方程式的相异实根个数如下表所述方程式相异实根的个数13311关于的微小值试问下列哪一个选项是正确的( )A. B. C. D.解析方程式的相异实根数等于函数与水平线两图形的交点数依题意可得两图形的略图有以下两种情形(1)当的最高次项系数为正时 (2) 当的最高次项系数为负时 因微小值点位于水平线与之间所以其坐标(即微小值)的

11、范围为 故选(B)10. 将一圆的六个等分点分成两组相间的三点它们所构成的两个正三角形扣除内部六条线段后可以形成一正六角星如图所示的正六角星是以原点为中心其中分别为原点到两个顶点的向量若将原点到正六角星12个顶点的向量都写成为的形式则的最大值为( ) A. 2 B. 3 C. 4 D. 5 解析由于想求的最大值所以考虑图中的6个顶点之向量即可争辩如下(1)由于所以(2)由于所以(3)由于所以(4)由于所以(5)由于所以(6)由于所以因此的最大值为故选D第卷(非选择题共100分)三、 填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。11某三棱锥的三视图如图所示, 该三棱

12、锥的体积是 . 解析:由俯视图与侧视图可知三棱锥的底面积为,由侧视图可知棱锥的高为2,所以棱锥的体积为,13. 已知两个单位向量,的夹角为30,.若,则正实数=_解析:t=113. 若变量x,y满足约束条件且z5yx的最大值为a,最小值为b,ab的值是_解析:本题主要考查线性规划的应用,意在考查考生对基础学问的把握约束条件表示以(0,0),(0,2),(4,4),(8,0)为顶点的四边形区域,检验四个顶点的坐标可知,当x4,y4时,azmax54416;当x8,y0时,bzmin5088,ab24.14、函数的图象恒过定点,若点在直线mx+ny+2=0上,其中,则的最小值为 2007山东卷改编

13、答案:415、2008年高考福建省理科数学第11题是:“双曲线()的两个焦点为、,若为其上一点,且,则双曲线离心率的取值范围为:A(1,3);B(1,3;C(3,+);D3,+)”其正确选项是B。若将其中的条件“”更换为“,且”,试经过合情推理,得出双曲线离心率的取值范围是 答案:三、解答题(本大题共6小题,共80分,解答题写出必要的文字说明、推演步骤。)16.(本小题满分13分)已知向量, ,设函数(1)求函数的单调增区间;(2)已知锐角的三个内角分别为若,边,求边解:(1) 4分 R,由 得 6分函数的单调增区间为 7分 (2),即,角为锐角,得, 9分又, ,由正弦定理得 13分本题由练

14、习改编,考查向量的坐标运算,三角恒等变换,及正弦定理的应用。17.(本小题满分13分)已知等差数列的各项均为正数,其前项和为,为等比数列, ,且()求与;()证明.解:(1)设的公差为,且的公比为7分(2) ,9分 13分19. (本小题满分13分)如图,在三棱柱中,是边长为的正方形,平面平面,.C1B1A1CBA(1)求证:平面;(2)求二面角的余弦值;(3)证明:在线段上存在点,使得,并求的值。 解:(I)由于AA1C1C为正方形,所以AA1 AC.由于平面ABC平面AA1C1C,且AA1垂直于这两个平面的交线AC,所以AA1平面ABC. 3分(II)由(I)知AA1 AC,AA1 AB.

15、 由题知AB=3,BC=5,AC=4,所以ABAC. 如图,以A为原点建立空间直角坐标系A,则B(0,3,0),A1(0,0,4),B1(0,3,4),C1(4,0,4),设平面A1BC1的法向量为,则,即,令,则,所以. 6分同理可得,平面BB1C1的法向量为,所以. 由题知二面角A1BC1B1为锐角,所以二面角A1BC1B1的余弦值为. 8分(III)设D是直线BC1上一点,且. 所以.解得,.所以. 由,即.解得. 11分由于,所以在线段BC1上存在点D,使得ADA1B.此时,. 13分19.(本小题满分13分)设椭圆E: (a,b0),短轴长为4,离心率为,O为坐标原点,(I)求椭圆E

16、的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,求出该圆的方程,若不存在说明理由。解:(1)由于椭圆E: (a,b0),b=2, e=所以解得所以椭圆E的方程为 5分(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为解方程组得,即, 7分则=,即 ,要使,需使,即,所以,所以又,所以,所以,即或,由于直线为圆心在原点的圆的一条切线,所以圆的半径为,所求的圆为, 11分此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上, 存在圆心在原点的圆,使得该圆的任意一条切

17、线与椭圆E恒有两个交点A,B,且. 13分20.(本小题满分14分)已知函数()争辩函数在定义域内的极值点的个数;()若函数在处取得极值,且对,恒成立,求实数的取值范围;()当且时,试比较的大小解:(),当时,在上恒成立,函数 在单调递减,在上没有极值点;当时,得,得,在上递减,在上递增,即在处有微小值当时在上没有极值点,当时,在上有一个极值点 4分()函数在处取得极值,令,可得在上递减,在上递增,即 9分()解:令,由()可知在上单调递减,则在上单调递减当时,即当时,当时, 14分21. 本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题做答,满分14分,假如多做,则按所做的

18、前两题计分,做答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。(1)(本小题满分7分)选修4-2:矩阵与变换二阶矩阵M对应的变换T将点(2,2)与(4,2)分别变换成点(2,2)与(0,4)求矩阵M;设直线l在变换T作用下得到了直线m:xy6,求l的方程解(1)设M,所以,且,解得,所以M. 4分(2)由于且m:xy6,所以(x2y)(3x4y)6,即xy30,直线l的方程是xy30 7分(3) (本小题满分7分)选修4-4:坐标系与参数方程已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的非负半轴重合若曲线的方程为,曲线的参数方程为() 将的方程化为直角坐标方程;()若点为上的动点,为上的动点,求的最小值解:()由已知得,即3分()由得,所以圆心为,半径为1又圆心到直线的距离为,5分所以的最大值为7分(4) (本小题满分7分)选修4-5:不等式选讲已知函数f(x)| x+3|x2|.求不等式f(x)3的解集;若f(x) |a4|有解,求a的取值范围解:(1) 1, + ) 3分(2) |a4|5 -1a9 7分

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服