1、第2讲空间点、线、面的位置关系基础巩固题组(建议用时:40分钟)一、选择题1若空间三条直线a,b,c满足ab,bc,则直线a与c()A肯定平行B肯定相交C肯定是异面直线D平行、相交、是异面直线都有可能解析当a,b,c共面时,ac;当a,b,c不共面时,a与c可能异面也可能相交答案D2(2022江西七校联考)已知直线a和平面,l,a,a,且a在,内的射影分别为直线b和c,则直线b和c的位置关系是()A相交或平行 B相交或异面C平行或异面 D相交、平行或异面解析依题意,直线b和c的位置关系可能是相交、平行或异面,选D.答案D3l1,l2,l3是空间三条不同的直线,则下列命题正确的是()Al1l2,
2、l2l3l1l3Bl1l2,l2l3l1l3Cl1l2l3l1,l2,l3共面Dl1,l2,l3共点l1,l2,l3共面解析当l1l2,l2l3时,l1与l3也可能相交或异面或平行,故A不正确;l1l2,l2l3l1l3,故B正确;当l1l2l3时,l1,l2,l3未必共面,如三棱柱的三条侧棱,故C不正确;l1,l2,l3共点时,l1,l2,l3未必共面,如正方体中从同一顶点动身的三条棱,故D不正确答案B4(2022三亚一模)在空间四边形ABCD中,ABCD,ADBC,ABAD,M,N分别是对角线AC与BD的中点,则MN与()AAC,BD之一垂直 BAC,BD都垂直CAC,BD都不垂直 DAC
3、,BD不肯定垂直解析连接AN,CN,ADBC,ABCD,BDBD,ABDCDB,则ANCN,在等腰ANC中,由M为AC的中点知MNAC.同理可证MNBD.故选B.答案B5(2022深圳调研)两条异面直线在同一个平面上的正投影不行能是()A两条相交直线 B两条平行直线C两个点 D一条直线和直线外一点解析如图,在正方体ABCDEFGH中,M,N分别为BF,DH的中点,连接MN,DE,CF,EG.当异面直线为EG,MN所在直线时,它们在底面ABCD内的射影为两条相交直线;当异面直线为DE,GF所在直线时,它们在底面ABCD内的射影分别为AD,BC,是两条平行直线;当异面直线为DE,BF所在直线时,它
4、们在底面ABCD内的射影分别为AD和点B,是一条直线和一个点,故选C.答案C二、填空题6平面,相交,在,内各取两点,这四点都不在交线上,这四点能确定_个平面解析若过四点中任意两点的连线与另外两点的连线相交或平行,则确定一个平面;否则确定四个平面答案1或47假如两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线_对解析如图所示,与AB异面的直线有B1C1,CC1,A1D1,DD1四条,由于各棱具有不同的位置,且正方体共有12条棱,排解两棱的重复计算,共有异面直线24(对)答案248. 如图,在正方体ABCDA1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:直线
5、AM与CC1是相交直线;直线AM与BN是平行直线;直线BN与MB1是异面直线;直线AM与DD1是异面直线其中正确的结论为_解析A,M,C1三点共面,且在平面AD1C1B中,但C平面AD1C1B,因此直线AM与CC1是异面直线,同理AM与BN也是异面直线,AM与DD1也是异面直线,错,正确;M,B,B1三点共面,且在平面MBB1中,但N平面MBB1,因此直线BN与MB1是异面直线,正确答案三、解答题9.如图,四边形ABEF和ABCD都是直角梯形,BADFAB90,BC綉AD,BE綉FA,G,H分别为FA,FD的中点(1)证明:四边形BCHG是平行四边形;(2)C,D,F,E四点是否共面?为什么?
6、(1)证明由已知FGGA,FHHD,可得GH綉AD.又BC綉AD,GH綉BC,四边形BCHG为平行四边形(2)解由BE綉AF,G为FA中点知,BE綉FG,四边形BEFG为平行四边形,EFBG.由(1)知BG綉CH,EFCH,EF与CH共面又DFH,C,D,F,E四点共面10如图,在四棱锥OABCD中,底面ABCD是边长为2的正方形,OA底面ABCD,OA2,M为OA的中点(1)求四棱锥OABCD的体积;(2)求异面直线OC与MD所成角的正切值的大小解(1)由已知可求得,正方形ABCD的面积S4,所以,四棱锥OABCD的体积V42.(2)如图,连接AC,设线段AC的中点为E,连接ME,DE,则E
7、MD(或其补角)为异面直线OC与MD所成的角,由已知,可得DE,EM,MD,()2()2()2,DEM为直角三角形,tanEMD.故异面直线OC与MD所成角的正切值为.力量提升题组(建议用时:25分钟)11.(2021长春一模)一个正方体的开放图如图所示,A,B,C,D为原正方体的顶点,则在原来的正方体中()AABCD BAB与CD相交CABCD DAB与CD所成的角为60解析如图,把开放图中的各正方形按图1所示的方式分别作为正方体的前、后、左、右、上、下面还原,得到图2所示的直观图,可见选项A,B,C不正确图2中,BECD,ABE为AB与CD所成的角,ABE为等边三角形,ABE60,正确选项
8、为D.答案D12(2022北京西城区模拟)如图所示,在空间四边形ABCD中,点E,H分别是边AB,AD的中点,点F,G分别是边BC,CD上的点,且,则 ()AEF与GH平行BEF与GH异面CEF与GH的交点M可能在直线AC上,也可能不在直线AC上DEF与GH的交点M肯定在直线AC上解析依题意,可得EHBD,FGBD,故EHFG,所以E,F,G,H共面由于EHBD,FGBD,故EHFG,所以EFGH是梯形,EF与GH必相交,设交点为M.由于点M在EF上,故点M在平面ACB上同理,点M在平面ACD上,即点M是平面ACB与平面ACD的交点,而AC是这两个平面的交线,所以点M肯定在直线AC上答案D13
9、四棱锥PABCD的全部侧棱长都为,底面ABCD是边长为2的正方形,则CD与PA所成角的余弦值为_解析由于四边形ABCD为正方形,故CDAB,则CD与PA所成的角即为AB与PA所成的角,即为PAB.在PAB内,PBPA,AB2,利用余弦定理可知cosPAB.答案14. 如图所示,正方体ABCDA1B1C1D1中,E,F分别是AB和AA1的中点求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点证明(1)连接EF,CD1,A1B.E,F分别是AB,AA1的中点,EFBA1.又A1BD1C,EFCD1,E,C,D1,F四点共面(2)EFCD1,EFCD1,CE与D1F必相交,设交点为P,则由PCE,CE平面ABCD,得P平面ABCD.同理P平面ADD1A1.又平面ABCD平面ADD1A1DA,P直线DA.CE,D1F,DA三线共点.