1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调整合适的观看比例,答案解析附后。关闭Word文档返回原板块。课时提升作业(五)函数的单调性与最值 (25分钟50分)一、选择题(每小题5分,共35分)1.下列函数中,在区间(1,+)上是增函数的是()A.y=-x+1B.y=C.y=-(x-1)2D.y=31-x【解析】选B.函数y=-x+1在(1,+)上为减函数;y=在(1,+)上为增函数;y=-(x-1)2在(1,+)上为减函数;y=31-x在(1,+)上为减函数,故选B.2.(2021济南模拟)“m=1”是“函数f(x)=x2-6mx+6在区间(-,3上为减函数”的()A.必
2、要不充分条件B.充分不必要条件C.充分必要条件D.既不充分又不必要条件【解析】选B.若m=1,则f(x)=x2-6x+6=(x-3)2-3,由二次函数的图象及其性质知,f(x)在区间(-,3上为单调减函数,即“m=1”是“函数f(x)=x2-6mx+6在区间(-,3上为减函数”的充分条件;反过来,若函数f(x)=x2-6mx+6在区间(-,3上为减函数,则33m,即m1,不能推出m=1,即“m=1”不是“函数f(x)=x2-6mx+6在区间(-,3上为减函数”的必要条件.综上所述,“m=1”是“函数f(x)=x2-6mx+6在区间(-,3上为减函数”的充分不必要条件.3.(2021烟台模拟)定
3、义在R上的偶函数f(x)满足:对x1,x20,+),且x1x2,都有(x1-x2)f(x1)-f(x2)0,则()A.f(3)f(-2)f(1)B.f(1)f(-2)f(3)C.f(-2)f(1)f(3)D.f(3)f(1)0,所以函数f(x)在0,+)上是增函数,所以f(3)f(2)f(1).由于f(-2)=f(2),所以f(3)f(-2)f(1).【加固训练】(2021江南十校模拟)已知定义在R上的函数f(x),其导函数f(x)的大致图象如图所示,则下列叙述正确的是()A.f(b)f(c)f(d)B.f(b)f(a)f(e)C.f(c)f(b)f(a)D.f(c)f(e)f(d)【解析】选
4、C.依题意得,当x(-,c)时,f(x)0;当x(c,e)时,f(x)0.因此,函数f(x)在(-,c)上是增函数,在(c,e)上是减函数,在(e,+)上是增函数,又abf(b)f(a).4.(2021厦门模拟)“a0”是“函数f(x)=|(ax-1)x|在区间(0,+)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选C.当a=0时,f(x)=|(ax-1)x|=|x|在区间(0,+)上单调递增;当a0时,结合函数f(x)=|(ax-1)x|=|ax2-x|的图象知函数在(0,+)上先增后减再增,不符合条件,如图(2)所示.所以,要使函数
5、f(x)=|(ax-1)x|在(0,+)上单调递增只需a0.即“a0”是“函数f(x)=|(ax-1)x|在区间(0,+)内单调递增”的充分必要条件.【加固训练】已知函数f(x)=则“-2a0”是“函数f(x)在R上单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选B.f(x)在R上单调递增的充分必要条件是a=0或解得a=0或-a0,即-a0,由此可知“-2a0”是“函数f(x)在R上单调递增”的必要而不充分条件,故选B.5.(2021阜阳模拟)函数y=x+4x,x12,4的值域是()A.5,8B.5,172C. 4,8D.4,172【解析】
6、选D.y=x+4x24=4,当x=212,4时“=”成立,所以ymin=4, ymax=12+8=172.6.已知f(x)是定义在R上的增函数,函数y=f(x-1)的图象关于点(1,0)对称,若对任意的x,yR,不等式f(x2-6x+21)+f(y2-8y)3时,x2+y2的取值范围是()A.(3,7)B.(9,25)C.(13,49D.(9,49)【解析】选C.由于函数y=f(x-1)的图象关于点(1,0)对称,所以函数y=f(x)的图象关于点(0,0)对称,即函数y=f(x)为奇函数,则f(-x)=-f(x),又由于f(x)是定义在R上的增函数且f(x2-6x+21)+f(y2-8y)0恒
7、成立,所以f(x2-6x+21)-f(y2-8y)=f(8y-y2)恒成立,所以x2-6x+218y-y2,所以(x-3)2+(y-4)23时,M表示以(3,4)为圆心2为半径的右半圆内的任意一点,则x2+y2表示在半圆内任取一点与原点的距离的平方,结合圆的学问可知13x2+y249.7.设xR,若函数f(x)为单调递增函数,且对任意实数x,都有f(f(x)-ex)=e+1(e是自然对数的底数),则f(ln 2)的值等于()A.1B.e+1C.3D.e+3【解题提示】利用换元法,将函数转化为f(t)=e+1,依据函数的对应关系求出t的值,即可求出函数f(x)的表达式,即可得到结论.【解析】选C
8、.设t=f(x)-ex,则f(x)=ex+t,则条件等价为f(t)=e+1,令x=t,则f(t)=et+t=e+1,由于函数f(x)为单调递增函数,所以函数为一对一函数,解得t=1,所以f(x)=ex+1,即f(ln 2)=eln 2+1=2+1=3.故选C.二、填空题(每小题5分,共15分)8.(2021郑州模拟)定义运算=ad-bc,若函数f(x)=在(-,m)上单调递减,则实数m的取值范围是.【解析】由已知得f(x)=(x-1)(x+3)+2x=(x+2)2-7,在(-,-2上单调递减,要使函数f(x)在(-,m)上单调递减,所以m-2.答案:(-,-2【加固训练】设函数f(x)=在区间
9、(-2,+)上是增函数,那么a的取值范围是.【解析】由于f(x)=函数f(x)在区间(-2,+)上是增函数,所以解得a1.答案:1,+)9.(2022天津高考)函数f(x)=lgx2的单调递减区间是.【解析】设t=x2,依据复合函数的单调性可知,当t=x2单调递减时,函数f(x)=lgx2单调递减,而函数t=x2的单调递减区间为(-,0),故函数f(x)=lgx2的单调递减区间是(-,0).答案:(-,0)10.用mina,b,c表示a,b,c三个数中的最小值.设f(x)=min2x,x+2,10-x(x0),则f(x)的最大值为.【解析】由f(x)=min2x,x+2,10-x(x0)画出图
10、象,最大值在A处取到,联立得y=6.答案:6(20分钟40分)1.(5分)定义在R上的函数f(x)满足f(x+y)=f(x)+f(y),当x0,则函数f(x)在a,b上有()A.最小值f(a)B.最大值f(b)C.最小值f(b)D.最大值【解题提示】先探究f(x)在a,b上的单调性,再推断最值状况.【解析】选C.设x1x2,由已知得f(x1)=f(x1-x2)+x2)=f(x1-x2)+f(x2).又x1-x20,所以f(x1)f(x2),即f(x)在R上为减函数,所以f(x)在a,b上亦为减函数,所以f(x)min=f(b),f(x)max=f(a),故选C.2.(5分)(2021太原模拟)
11、使函数y=与y=log3(x-2)在(3,+)上具有相同的单调性,则实数k的取值范围是.【解析】由y=log3(x-2)的定义域为(2,+),且为增函数,故在(3,+)上是增函数.又函数使其在(3,+)上是增函数,故4+k0,得k-4.答案:(-,-4)3.(5分)函数f(x)=x+21-x的最大值为.【解析】方法一:设1-x=t(t0),所以x=1-t2.所以y=x+21-x=1-t2+2t=-t2+2t+1=-(t-1)2+2.所以当t=1,即x=0时,ymax=2.方法二:f(x)的定义域为x|x1,f(x)=1-11-x.由f(x)=0,得x=0.当0x1时,f(x)0,f(x)为减函
12、数.当x0,f(x)为增函数.所以当x=0时,f(x)max=f(0)=2.答案: 24.(12分)(2021宁波模拟)已知函数f(x)=lg(x+-2),其中a是大于0的常数.(1)求函数f(x)的定义域.(2)当a(1,4)时,求函数f(x)在2,+)上的最小值.(3)若对任意x2,+)恒有f(x)0,试确定a的取值范围.【解析】(1)由x+-20,得当a1时,x2-2x+a0恒成立,定义域为(0,+),当a=1时,定义域为x|x0且x1,当0a1时,定义域为x|0x1+.(2)设g(x)=x+-2,当a(1,4),x2,+)时,g(x)=0恒成立,所以g(x)=x+-2在2,+)上是增函
13、数.所以f(x)=lg(x+-2)在2,+)上是增函数.所以f(x)=lg(x+-2)在2,+)上的最小值为f(2)=lg .(3)对任意x2,+)恒有f(x)0,即x+-21对x2,+)恒成立.所以a3x-x2,令h(x)=3x-x2,而h(x)=3x-x2=-(x-)2+在x2,+)上是减函数,所以h(x)max=h(2)=2.所以a2.5.(13分)(力气挑战题)已知定义在区间(0,+)上的函数f(x)满足fx1x2=f(x1)-f(x2),且当x1时,f(x)0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)任取x1,x2(0,+),且x1x2,则x1x21,由于当x1时,f(x)0,所以fx1x20,即f(x1)-f(x2)0,因此f(x1)f(x2),所以函数f(x)为单调递减函数.(3)由于f(x)在(0,+)上是单调递减函数,所以f(x)在2,9上的最小值为f(9).由fx1x2=f(x1)-f(x2)得,f93=f(9)-f(3),而f(3)=-1,所以f(9)=-2.所以f(x)在2,9上的最小值为-2.关闭Word文档返回原板块
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100