ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:47.17KB ,
资源ID:3828927      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3828927.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(【2022届走向高考】高三数学一轮(北师大版)专题1-高考中的导数应用问题.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【2022届走向高考】高三数学一轮(北师大版)专题1-高考中的导数应用问题.docx

1、 专题一 高考中的导数应用问题 1.已知函数f(x)=(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行. (1)求k的值; (2)求f(x)的单调区间. [分析] 由f ′(1)=0求出k的值;(2)求出函数的定义域,利用导数求单调区间. [解析] (1)由f(x)=, 得f ′(x)=,x∈(0,+∞), 由于曲线y=f(x)在(1,f(1))处的切线与x轴平行. 所以f ′(1)=0,因此k=1. (2)由(1)得f ′(x)=(1-x-xlnx),x∈(0,+∞), 令h(x)=1-x-xlnx,x∈(

2、0,+∞), 当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0. 又ex>0,所以x∈(0,1)时,f ′(x)>0; x∈(1,+∞)时,f ′(x)<0. 因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞). 2.设f(x)=-x3+x2+2ax. (1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围. (2)当0

3、令+2a>0,得a>- 所以,当a>-时,f(x)在(,+∞)上存在单调递增区间.即f(x)在(,+∞)上存在单调递增区间时,a的取值范围是(-,+∞). (2)令f ′(x)=0,得两根x1=,x2=. 所以f(x)在(-∞,x1),(x2,+∞)上单调递减, 在(x1,x2)上单调递增. 当0

4、村庄似修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V平方米.假设建筑成本仅与表面积有关,侧面的建筑成本为100元/平方米,底面的建筑成本为160元/平方米,该蓄水池的总建筑成本为12 000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)争辩函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大. [解析] (1)由于蓄水池侧面的总成本为100·2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元,又据题意200πrh+160πr2=12 000π,所

5、以h=(300-4r2),从而 V(r)=πr2h=(300r-4r2). 因r>0,又由h>0可得r<5, 故函数V(r)的定义域为(0,5). (2)因V(r)=(300r-4r3),故V′(r)=(300-12r2),令V′(r)=0,解得r1=5.r2=-5(因r2=-5不在定义域内,舍去). 当r∈(0,5)时,V′(r)>0,故V(r)在(0,5)上为增函数; 当r∈(5,5)时,V′(r)<0,故V(r)在(5,5)上为减函数. 由此可知,V(r)在r=5处取得最大值,此时h=8, 即当r=5,h=8时,该蓄水池的体积最大. 4.(文)(2022·北京高考)已知

6、函数f(x)=2x3-3x. (1)求f(x)在区间[-2,1]上的最大值; (2)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围. [解析] (1)由f(x)=2x3-3x得f ′(x)=6x2-3, 令f ′(x)=0,得x=-或x=. 由于f(-2)=-10,f(-)=, f()=-,f(1)=-1, 所以f(x)在区间[-2,1]上的最大值为f(-)=. (2)设过点P(1,t)的直线与曲线y=f(x)相切于点(x0,y0), 则y0=2x-3x0,且切线斜率为k=6x-3, 所以切线方程为y-y0=(6x-3)(x-x0), 因此t-y0=

7、6x-3)(1-x0). 整理得4x-6x+t+3=0. 设g(x)=4x3-6x2+t+3, 则“过点P(1,t)存在3条直线与曲线y=f(x)相切”等价于“g(x)有3个不同零点”. g′(x)=12x2-12x=12x(x-1). g(x)与g′(x)的状况如下: x (-∞,0) 0 (0,1) 1 (1,+∞) g′(x) + 0 - 0 + g(x)  t+3  t+1  所以,g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的微小值. 当g(0)=t+3≤0,即t≤-3时,此时g(x)在区间(-∞,1]和(1

8、+∞)上分别至多有1个零点,所以g(x)至多有2个零点. 当g(1)=t+1≥0,即t≥-1时,此时g(x)在区间(-∞,0)和[0,+∞)上分别至多有1个零点,所以g(x)至多有2个零点. 当g(0)>0且g(1)<0,即-30,所以g(x)分别在区间[-1,0),[0,1)和[1,2)上恰有1个零点.由于g(x)在区间(-∞,0)和(1,+∞)上单调,所以g(x)分别在区间(-∞,0)和[1,+∞)上恰有1个零点. 综上可知,当过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(-3,-1). (理)

9、2022·新课标Ⅱ)已知函数f(x)=ex-e-x-2x. (1)争辩f(x)的单调性; (2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值; (3)已知1.4142<<1.4143,估量ln2的近似值(精确到0.001). [解析] (1)f′(x)=ex+e-x-2≥0,等号仅当x=0时成立. 所以f(x)在(-∞,+∞)单调递增. (2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(ex-e-x)+(8b-4)x,g′(x)=2[e2x+e-2x-2b(ex+e-x)+(4b-2)]=2(ex+e-x-2)(ex+e-x-2b+

10、2). ①当b≤2时,g′(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)单调递增.而g(0)=0,所以对任意x>0,g(x)>0. ②当b>2时,若x满足20, ln2>>0.6928; 当b=+1时,ln(b-1+)=ln, g(ln)=--2+(3+2)ln2<0, ln2<<0.6934.所以ln2

11、的近似值为0.693. 1.设函数f(x)=a2lnx-x2+ax,a>0. (1)求f(x)的单调区间; (2)求实数a的值,使e-1≤f(x)≤ex对x∈[1,e]恒成立.注:e为自然对数的底数. [解析] (1)由于f(x)=a2lnx-x2+ax,其中x>0, 所以f′(x)=-2x+a=-. 由于a>0,所以f(x)的增区间为(0,a),减区间为(a,+∞). (2)由题意得f(1)=a-1≥e-1,即a≥e. 由(1)知f(x)在[1,e]内单调递增, 要使e-1≤f(x)≤e2对x∈[1,e]恒成立. 只要 解得a=e. 2.已知函数f(x)=x2-(

12、a+1)x+a(1+lnx). (1)求曲线y=f(x)在点(2,f(2))处与直线y=-x+1垂直的切线方程; (2)当a>0时,求函数f(x)的极值. [解析] (1)函数f(x)的定义域为(0,+∞), f′(x)=x-(a+1)+,依据题意知曲线y=f(x)在点(2,f(2))处切线的斜率为1,所以f′(2)=1,即2-(a+1)+=1,所以a=0,f(x)=x2-x,此时f(2)=2-2=0,故曲线y=f(x)在(2,f(2))处与直线y=-x+1垂直的切线方程为y=x-2. (2)f′(x)=x-(a+1)+==. ①当00,

13、函数f(x)单调递增;当x∈(a,1)时,f′(x)<0,函数f(x)单调递减;当x∈(1,+∞)时,f′(x)>0,函数f(x)单调递增.此时x=a是f(x)的极大值点,x=1是f(x)的微小值点,所以函数f(x)的极大值是f(a)=-a2+alna,微小值是f(1)=-; ②当a=1时,当x∈(0,1)时,f′(x)>0,当x=1时,f′(x)=0,当x∈(1,+∞)时,f′(x)>0,所以函数f(x)在定义域内单调递增,此时f(x)没有极值点,故极值不存在. ③当a>1时,当x∈(0,1)时,f′(x)>0,函数f(x)单调递增;当x∈(1,a)时,f′(x)<0,函数f(x)单调递

14、减;当x∈(a,+∞)时,f′(x)>0,函数f(x)单调递增,此时x=1是f(x)的极大值点,x=a是f(x)的微小值点,所以函数f(x)的极大值是f(1)=-,微小值是f(a)=-a2+alnA. 综上,当01时,函数f(x)的极大值是-,微小值是-a2+alnA. 3.(文)(2021·威海模拟)已知函数f(x)=ax+xlnx的图像在点x=e(e为自然对数的底数)处的切线斜率为3. (1)求实数a的值; (2)若k∈Z,且k<对任意x>1恒成立,求k的最大值. [解析] (

15、1)由于f(x)=ax+xlnx, 所以f′(x)=a+lnx+1. 由于函数f(x)=ax+xlnx的图像在点x=e处的切线斜率为3, 所以f′(e)=3,即a+lne+1=3, 所以a=1. (2)由(1)知,f(x)=x+xlnx, 又k<对任意x>1恒成立, 即k<对任意x>1恒成立. 令g(x)=,则g′(x)=, 令h(x)=x-lnx-2(x>1),则h′(x)=1-=>0, 所以函数h(x)在(1,+∞)上单调递增. 由于h(3)=1-ln3<0,h(4)=2-2ln2>0, 所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).

16、 当1x0时,h(x)>0,即g′(x)>0, 所以函数g(x)=在(1,x0)上单调递减,在(x0,+∞)上单调递增, 所以[g(x)]min=g(x0)===x0∈(3,4),所以k<[g(x)]min=x0∈(3,4),故整数k的最大值为3. (理)(2022·福建高考)已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2

17、恒有x2ln2时,f′(x)>0,f(x)单调递增; 所以当x=ln2时,f(x)有微小值. 且微小值为f(ln2)=eln2-2ln2=2-ln4, f(x)无极大值. (2)令g(x)=ex-x2,则g′(x)=ex-2x. 由(1)得,g′(x)=f(x)≥f(ln2)=2-ln4>0,即g′(x)>0.

18、所以g(x)在R上单调递增,又g(0)=1>0, 所以当x>0时,g(x)>g(0)>0,即x20时x20时,x21,要使不等式x2kx2成立,而要使ex>kx2成立,则只要x>ln(kx2),只要x>2lnx+lnk成立, 令h(x)=x-2lnx-lnk,则h′(x)=1-=,所以当x>2时,h′(x)>0,h(x)在(2,+∞)内单调递增 取x0=16k>16,所以h(x)在(x0,+∞)内单调递增 又h(x0)=16k-2ln(16k)-lnk=8(k-ln2)+3(k-lnk)+5k 易知k>lnk,k>ln2,5k>0,所以h(x0)>0. 即存在x0=,当x∈(x0,+∞)时,恒有x2

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服