ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:91.27KB ,
资源ID:3827863      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3827863.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届-数学一轮(文科)-浙江专用-课时作业-第八章-解析几何-1-.docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届-数学一轮(文科)-浙江专用-课时作业-第八章-解析几何-1-.docx

1、第八章 平面解析几何第1讲直线的方程基础巩固题组(建议用时:40分钟)一、选择题1.如图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则()Ak1k2k3Bk3k1k2Ck3k2k1Dk1k3k2解析直线l1的倾斜角1是钝角,故k13,所以0k3k2,因此k1k3k2,故选D.答案D2(2021太原质检)若直线l与直线y1,x7分别交于点P,Q,且线段PQ的中点坐标为(1,1),则直线l的斜率为()A. B C D.解析依题意,设点P(a,1),Q(7,b),则有解得a5,b3,从而可知直线l的斜率为.答案B3两条直线l1:1和l2:1在同始终角坐标系中的图象可以是()答案A4(202

2、2郑州模拟)直线l经过点A(1,2),在x轴上的截距的取值范围是(3,3),则其斜率的取值范围是()A.B.C(,1)D(,1)解析设直线的斜率为k,如图,过定点A的直线经过点B时,直线l在x轴上的截距为3,此时k1;过定点A的直线经过点C时,直线l在x轴上的截距为3,此时k,满足条件的直线l的斜率范围是(,1).答案D5设直线axbyc0的倾斜角为,且sin cos 0,则a,b满()Aab1 Bab1Cab0 Dab0解析由sin cos 0,得1,即tan 1.又由于tan ,所以1.即ab,故应选D.答案D二、填空题6若点A(4,3),B(5,a),C(6,5)三点共线,则a的值为_解

3、析kAC1,kABa3.由于A,B,C三点共线,所以a31,即a4.答案47(2021烟台模拟)直线3x4yk0在两坐标轴上的截距之和为2,则实数k_.解析令x0,得y;令y0,得x,则有2,所以k24.答案248一条直线经过点A(2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为_解析设所求直线的方程为1.A(2,2)在此直线上,1.又因直线与坐标轴围成的三角形面积为1,|a|b|1.由可得(1)或(2)由(1)解得或方程组(2)无解故所求的直线方程为1或1,即x2y20或2xy20为所求直线的方程答案x2y20或2xy20三、解答题9已知直线l与两坐标轴围成的三角形的面积为3

4、,分别求满足下列条件的直线l的方程:(1)过定点A(3,4);(2)斜率为.解(1)设直线l的方程是yk(x3)4,它在x轴,y轴上的截距分别是3,3k4,由已知,得(3k4)6,解得k1或k2.故直线l的方程为2x3y60或8x3y120.(2)设直线l在y轴上的截距为b,则直线l的方程是yxb,它在x轴上的截距是6b,由已知,得|6bb|6,b1.直线l的方程为x6y60或x6y60.10设直线l的方程为(a1)xy2a0(aR)(1)若l在两坐标轴上的截距相等,求l的方程;(2)若l不经过其次象限,求实数a的取值范围解(1)当直线过原点时,该直线在x轴和y轴上的截距为0,明显相等a2,方

5、程即为3xy0.当直线不过原点时,由截距存在且均不为0,得a2,即a11,a0,方程即为xy20.综上,l的方程为3xy0或xy20.(2)将l的方程化为y(a1)xa2,由题意得或a1.综上可知a的取值范围是(,1力量提升题组(建议用时:35分钟)11(2021东阳三校调研)一次函数yx的图象同时经过第一、三、四象限的必要不充分条件是()Am1,且n1 Bmn0Cm0,且n0 Dm0,且n0解析由于yx经过第一、三、四象限,故0,0,即m0,n0,但此为充要条件,因此,其必要不充分条件为mn0.答案B12若直线l:ykx与直线2x3y60的交点位于第一象限,则直线l的倾斜角的取值范围是()A

6、. B. C. D.解析如图,直线l:ykx,过定点P(0,),又A(3,0),kPA,则直线PA的倾斜角为,满足条件的直线l的倾斜角的范围是.答案B13已知直线x2y2分别与x轴、y轴相交于A,B两点,若动点P(a,b)在线段AB上,则ab的最大值为_解析直线方程可化为y1,故直线与x轴的交点为A(2,0),与y轴的交点为B(0,1),由动点P(a,b)在线段AB上,可知0b1,且a2b2,从而a22b,故ab(22b)b2b22b22,由于0b1,故当b时,ab取得最大值.答案14直线l过点P(1,4),分别交x轴的正方向和y轴的正方向于A,B两点(1)当|PA|PB|最小时,求l的方程;

7、(2)当|OA|OB|最小时,求l的方程解依题意,l的斜率存在,且斜率为负设l:y4k(x1)(k0)令y0,可得A;令x0,可得B(0,4k)(1)|PA|PB| (1k2)48.(留意k0)当且仅当k且k0即k1时,|PA|PB|取最小值这时l的方程为xy50.(2)|OA|OB|(4k)59.当且仅当k且k0,即k2时,|OA|OB|取最小值这时l的方程为2xy60.15已知O为平面直角坐标系的原点,过点M(2,0)的直线l与圆x2y21交于P,Q两点(1)若,求直线l的方程;(2)若OMP与OPQ的面积相等,求直线l的斜率解(1)依题意知直线l的斜率存在,直线l过点M(2,0),故可设直线l的方程为yk(x2)PQ两点在圆x2y21上,|1.,即|cosPOQ.POQ120,点O到直线l的距离等于.,解得k.直线l的方程为xy20或xy20.(2)OMP与OPQ的面积相等,MPPQ,即P为MQ的中点,2.设P(x1,y1),Q(x2,y2),(x22,y2),(x12,y1),即(*)P、Q两点在圆x2y21上,(*)由(*)及(*)得解得故直线l的斜率kkMP.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服