ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:548.98KB ,
资源ID:3827374      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3827374.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021高中数学北师大版选修2-2导学案:《定积分的概念》.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高中数学北师大版选修2-2导学案:《定积分的概念》.docx

1、第1课时定积分的概念1.理解连续函数的概念,会依据函数图像推断函数是否连续.2.会用分割、近似替代、求和、取极限等方法求曲边为二次函数曲线段的曲边梯形的面积.3.会求汽车做变速运动时在某一段时间内行驶的路程.4.通过求变速直线运动在某一段时间内的行驶路程,体会“以直代曲”和“以不变代变”的思想方法.5.了解定积分的概念,会通过四步曲求连续函数的定积分.6.了解定积分的几何意义及性质.我们学过正方形、长方形、三角形和梯形等平面“直边图形”的面积,在物理中,我们知道了匀速直线运动的时间、速度与路程的关系等.在数学和物理中,我们经常会遇到计算平面曲线所围成的平面“曲边图形”的面积、变速直线运动物体的

2、位移、变力做功的问题.如何解决这些问题呢?由于现有的学问无法解决这些问题,所以我们需要另寻方法.问题1:求曲边梯形面积的步骤是(1);(2);(3);(4).问题2:定积分的定义一般地,给定一个在区间a,b上的函数y=f(x),将a,b区间分成n份,分点为a=x0x1x2xn-1xn=b.第i个小区间为xi-1,xi,设其长度为xi,在这个小区间上取一点i,使f(i)在区间xi-1,xi上的值最大,设S=f(1)x1+f(2)x2+f(i)xi+f(n)xn.在这个小区间上取一点i,使f(i)在区间xi-1,xi上的值最小,设s=f(1)x1+f(2)x2+f(i)xi+f(n)xn.假如每次

3、分割后,最大的小区间的长度趋于0,S与s的差也趋于0,此时,S与s同时趋于某一个,我们就称是函数y=f(x)在区间a,b上的,记作ab f(x)dx,即ab f(x)dx=A.其中叫作,a叫作积分的,b叫作积分的,f(x)叫作.问题3:定积分的几何意义假如在区间a,b上函数f(x)连续且恒有,那么定积分ab f(x)dx表示由直线x=a,x=b(ab),x轴和曲线y=f(x)所围成的曲边梯形的.问题4:定积分的性质(1)ab 1dx=;(2)ab kf(x)dx=(k为常数);(3)ab f1(x)f2(x)dx=;(4)ab f(x)dx=ac f(x)dx+cb f(x)dx(其中acb)

4、.1.把区间1,3等分n份,所得n个小区间的长度均为().A.1nB.2nC.3nD.12n2.汽车以v=v(t)在0,t内作直线运动经过的路程为S,则下列叙述正确的是().A.将0,t等分n份,若以每个小区间左端点的速度近似替代时,求得的s是S的不足估量值B.将0,t等分n份,若以每个小区间右端点的速度近似替代时,求得的s是S的过剩估量值C.将0,t等分n份,n越大,求出的s近似替代S的精确度越高D.将0,t等分n份,当n很大时,求出的s就是S的精确值3.计算定积分:-11 |x|dx=.4.利用几何意义计算定积分-13 (3x+1)dx.求曲边梯形的面积求由曲线f(x)=2x,直线x=1,

5、直线x=0及x轴所围成的平面图形的面积S,并写出估量值的误差.求变速运动的路程一辆汽车在直线形大路上变速行驶,汽车在时刻t的速度为v(t)=-t2+5(单位:km/h).试估量这辆汽车在0t2(单位:h)这段时间内行驶的路程.利用定积分的几何意义求定积分用定积分的几何意义求下列各式的值.(1)-11 4-x2dx;(2)252 (1+sin x)dx.估量直线x=0,x=1,y=0与曲线y=x3所围成的曲边梯形的面积.一辆汽车的司机猛踩刹车,汽车滑行5 s后停下,在这一过程中,汽车的速度v(单位:m/s)是时间t的函数:v(t)=t2-10t+25(0t5).请估量汽车在刹车过程中滑行的距离s

6、.计算-33 (9-x2-x3)dx的值.1.函数f(x)=x2在区间i-1n,in上().A.f(x)的值变化很小B.f(x)的值变化很大C.f(x)的值不变化D.当n很大时,f(x)的值变化很小2.求由y=ex,x=2,y=1围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为().A.0,e2B.0,2C.1,2D.0,13.把区间a,b(ab)等分n份之后,第i个小区间是.4.依据定积分的几何意义求下列定积分的值:(1)-11 xdx;(2)02 cos xdx.已知甲、乙两车由同一起点同时动身,并沿同一路线(假定为直线)行驶.甲、乙两车的速度曲线分别为v甲、v乙(如图所示).那么

7、对于图中给定的t0和t1,下列推断中肯定正确的是().A.在t1时刻,甲车在乙车前面B.t1时刻后,甲车在乙车后面C.在t0时刻,两车的位置相同D.t0时刻后,乙车在甲车前面考题变式(我来改编):答案第四章定积分第1课时定积分的概念学问体系梳理问题1:(1)分割(2)近似替代(3)求和(4)靠近问题2:固定的常数AA定积分积分号下限上限被积函数问题3:f(x)0面积问题4:(1)b-a(2)kabf(x)dx(3)abf1(x)dxabf2(x)dx基础学习沟通1.B区间的总长度为2,则每个区间的长度为2n,2.C当n越大时,分割成的小区间长度越小,则求出的s近似替代S的精确度越高.3.1-1

8、1 |x|dx表示由y=|x|,x=1以及x轴所围成的平面图形的面积, -11x|dx=-10 (-x)dx+01 xdx=1211+1211=1.4.解:由直线x=-1,x=3,y=0,以及y=3x+1所围成的图形,如图所示:-133x+1)dx表示由直线x=-1,x=3,y=0以及y=3x+1所围成的图形在x轴上方的面积减去在x轴下方的面积,-133x+1)dx=12(3+13)(33+1)-12(-13+1)2=503-23=16.重点难点探究探究一:【解析】(1)分割:将区间0,1等分5份,即插入4个分点,在每个分点处作与y轴平行的直线段,将整个曲边梯形分成5个小曲边梯形.(2)近似替

9、代:若用f(0.2),f(0.4),f(0.6),f(0.8),f(1)分别表示这5个小曲边梯形的高,分别得到每个小曲边梯形的面积f(0.2)0.2,f(0.4)0.2,f(0.6)0.2,f(0.8)0.2,f(1)0.2.若用f(0),f(0.2),f(0.4),f(0.6),f(0.8)分别表示这5个小曲边梯形的高,分别得到每个小曲边梯形的面积f(0)0.2,f(0.2)0.2,f(0.4)0.2,f(0.6)0.2,f(0.8)0.2.(3)求和:由上述方法得曲边梯形面积的过剩估量值为S1=(20.2+20.4+20.6+20.8+21)0.21.55,不足估量值为s1=(20+20.

10、2+20.4+20.6+20.8)0.21.35.(4)靠近:在这种状况下,无论过剩估量值还是不足估量值,误差都不会超过0.20.假如需要,我们可以将区间分得更细,从而得到更精确的估量值.【小结】通过求曲边梯形面积的四个步骤:分割、近似替代、求和、靠近可以理解定积分的基本思想.探究二:【解析】将区间0,2等分10等份,如图:S=(-02+5-0.22+5-1.82+5)0.2=7.72,s=(-0.22+5-0.42+5-1.82+5-22+5)0.2=6.92,估量该车在这段时间内行驶的路程介于6.92 km与7.72 km之间.【小结】解决这类问题的方法是通过分割自变量的区间求得过剩估量值

11、和不足估量值,分割得越细,估量值就越接近精确值.当分割成的小区间的长度趋于0时,过剩估量值和不足估量值都趋于精确值.探究三:【解析】(1)由y=4-x2可知x2+y2=4(y0),其图像如图所示.-114-x2dx等于圆心角为3的弓形CED的面积与矩形ABCD的面积之和.S弓形=12322-1222sin3=23-3,S矩形=ABBC=23,则-114-x2dx=23+23-3=23+3.(2)函数y=1+sin x的图像如图所示,252 (1+sin x)dx表示阴影部分的面积,由图像的对称性可知2521+sinx)dx=S矩形ABCD=2.【小结】利用几何意义求定积分的关键是精确确定被积函

12、数的图像以及积分区间,正确利用相关的几何学问求面积,不规章的图形常用分割法求面积,留意精确的确定分割点.思维拓展应用应用一:将区间0,1等分5份,如图(1),全部小矩形的面积之和(记为S1),明显为过剩估量值,S1=(0.23+0.43+0.63+0.83+13)0.2=0.36.如图(2),全部小矩形的面积之和(记为s1),明显为不足估量值,s1=(03+0.23+0.43+0.63+0.83)0.2=0.16,所以该曲边梯形的面积介于0.16与0.36之间.应用二:将滑行时间5 s平均分成5份.分别用v(0),v(1),v(2),v(3),v(4)近似替代汽车在01 s,12 s,23 s

13、,34 s,45 s内的平均速度,求出滑行距离s1,s1=v(0)+v(1)+v(2)+v(3)+v(4)1=55(m),由于v是下降的,明显s1大于s,我们称它为汽车在5 s内滑行距离的过剩估量值.假如用v(1),v(2),v(3),v(4),v(5)分别近似替代汽车在01 s,12 s,23 s,34 s,45 s内的平均速度,求出汽车在5 s内滑行距离的不足估量值s1,s1=v(1)+v(2)+v(3)+v(4)+v(5)1=30(m).不论用过剩估量值s1还是不足估量值s1表示s,误差都不超过:s1-s1=55-30=25(m).为了得到更加精确的估量值,还可以将滑行时间分得更细些.应

14、用三:如图,由定积分的几何意义得-339-x2dx=322=92,-33x3dx=0,由定积分的性质得-339-x2-x3)dx=-339-x2dx-33x3dx=92.基础智能检测1.D当n很大,即x很小时,在区间i-1n,in上,可以认为f(x)=x2的值变化很小,近似地等于一个常数.2.B求出y=ex,x=2,y=1的交点分别为(0,1),(2,1),(2,e2),结合定积分的几何意义知,积分区间为0,2.3.a+i-1n(b-a),a+in(b-a)第i个区间长为b-an,第i个小区间的左端点的值为a+i-1n(b-a),右端点的值为a+in(b-a),所以区间为a+i-1n(b-a),a+in(b-a).4.解:(1)如图,-11xdx=-A1+A1=0.(2)如图,02cosxdx=A1-A2+A3=0.(A1,A2,A3分别表示图中相应各处面积)全新视角拓展A在t0时刻,两车的速度相等,且之前甲车速度始终大于乙车速度,故甲车在乙车前面.由于路程关于时间的函数是速度关于时间的函数的积分,由积分的几何意义知,速度曲线与t轴及t=t1所围成的面积即为t1时刻车子走过的路程,由图可知甲围成的面积较大,所以t1时刻甲车在乙车的前面.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服