ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:56.66KB ,
资源ID:3825326      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3825326.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学(北师大版)选修1-1教案:第1章-全称量词与存在量词-参考教案2.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学(北师大版)选修1-1教案:第1章-全称量词与存在量词-参考教案2.docx

1、1.3 全称量词与全称命题 一、创设情境在前面的学习过程中,我们曾经遇到过一类重要的问题:给含有“至多、至少、有一个”等量词的命题进行否定,确定它们的非命题。大家都曾感到困惑和无助,今日我们将特地学习和争辩这类问题,以解心中的郁结。问题1:请你给下列划横线的地方填上适当的词一 纸;一 牛;一 狗;一 马;一 人家;一 小船分析:张头条匹户叶什么是量词?这些表示人、事物或动作的单位的词称为量词。汉语的物量词纷繁简洁,又有兼表形象特征的作用,选用时主要应当讲求形象性,同时要遵从习惯性,并留意机敏性。不遵守量词使用的这些原则,就会闹出“一匹牛”“一头狗”“一只鱼”的笑话来。二、活动尝试全部已知人类语

2、言都使用量化,即使是那些没有完整的数字系统的语言,量词是人们相互交往的重要词语。我们今日争辩的量词不是究其语境和使用习惯问题,而是更多的赐予它数学的意境。问题2:下列命题中含有哪些量词?(1)对全部的实数x,都有x20;(2)存在实数x,满足x20;(3)至少有一个实数x,使得x220成立;(4)存在有理数x,使得x220成立;(5)对于任何自然数n,有一个自然数s使得s=nn;(6)有一个自然数s使得对于全部自然数n,有s=nn;分析:上述命题中含有:“全部的”、“存在”、“至少”、“任何”等表示全体和部分的量词。三、师生探究命题中除了主词、谓词、联词以外,还有量词。命题的量词,表示的是主词

3、数量的概念。在谓词规律中,量词被分为两类:一类是全称量词,另一类是存在量词。全称量词:如“全部”、“任何”、“一切”等。其表达的规律为:“对宇宙间的全部事物x来说,x都是F。”例句:“全部的鱼都会游泳。”存在量词:如“有”、“有的”、“有些”等。其表达的规律为:“宇宙间至少有一个事物x,x是F。”例句:“有的工程师是工人出身。”含有量词的命题通常包括单称命题、特称命题和全称命题三种。单称命题:其公式为“(这个)S是P”。例句:“这件事是我经办的。”单称命题表示个体,一般不需要量词标志,有时会用“这个”“某个”等。在三段论中是作为全称命题来处理的。全称命题:其公式为“全部S是P”。例句:“全部产

4、品都是一等品”。全称命题,可以用全称量词,也可以用“都”等副词、“人人”等主语重复的形式来表达,甚至有时可以没有任何的量词标志,如“人类是有才智的。”特称命题:其公式为“有的S是P”。例句:“大多数同学星期天休息”。特称命题使用存在量词,如“有些”、“很少”等,也可以用“基本上”、“一般”、“只是有些”等。含有存在性量词的命题也称存在性命题。问题3:推断下列命题是全称命题,还是存在性命题?(1)方程2x=5只有一解;(2)凡是质数都是奇数;(3)方程2x21=0有实数根;(4)没有一个无理数不是实数;(5)假如两直线不相交,则这两条直线平行;(6)集合AB是集合A的子集;分析:(1)存在性命题

5、;(2)全称命题;(3)存在性命题;(4)全称命题;(5)全称命题;(6)全称命题;四、数学理论1开语句:语句中含有变量x或y,在没有给定这些变量的值之前,是无法确定语句真假的这种含有变量的语句叫做开语句。如,x2,x-5=3,(x+y)(x-y)=0.2表示个体常项或变项之间数量关系的词为量词。量词可分两种:(1)全称量词日常生活和数学中所用的“一切的”,“全部的”,“每一个”,“任意的”,“凡”,“都”等词可统称为全称量词,记作、等,表示个体域里的全部个体。(2)存在量词日常生活和数学中所用的“存在”,“有一个”,“有的”,“至少有一个”等词统称为存在量词,记作,等,表示个体域里有的个体。

6、3含有全称量词的命题称为全称命题,含有存在量词的命题称为存在性命题。全称命题的格式:“对M中的全部x,p(x)”的命题,记为:存在性命题的格式:“存在集合M中的元素x,q(x)”的命题,记为:注:全称量词就是“任意”,写成上下颠倒过来的大写字母A,实际上就是英语any中的首字母。存在量词就是“存在”、“有”,写成左右反过来的大写字母E,实际上就是英语exist中的首字母。存在量词的“否”就是全称量词。五、巩固运用例1推断以下命题的真假:(1) (2) (3) (4)分析:(1)真;(2)假;(3)假;(4)真;例2指出下述推理过程的规律上的错误:第一步:设a=b,则有a2=ab其次步:等式两边

7、都减去b2,得a2-b2=ab-b2第三步:因式分解得(a+b)(a-b)=b(a-b)第四步:等式两边都除以a-b得,a+b=b第五步:由a=b代人得,2b=b第六步:两边都除以b得,2=1分析:第四步错:因a-b0,等式两边不能除以a-b 第六步错:因b可能为0,两边不能马上除以b,需争辩。心得:(a+b)(a-b)=b(a-b)a+b=b是存在性命题,不是全称命题,由此得到的结论不行靠。同理,由2b=b2=1是存在性命题,不是全称命题。例3推断下列语句是不是全称命题或者存在性命题,假如是,用量词符号表达出来。(1)中国的全部江河都注入太平洋;(2)0不能作除数;(3)任何一个实数除以1,仍等于这个实数;(4)每一个向量都有方向;分析:(1)全称命题,河流x中国的河流,河流x注入太平洋;(2)存在性命题,0R,0不能作除数;(3)全称命题,xR,;(4)全称命题,有方向;六、回顾反思要推断一个存在性命题为真,只要在给定的集合中找到一个元素x,使命题p(x)为真;要推断一个存在性命题为假,必需对在给定集合的每一个元素x,使命题p(x)为假。要推断一个全称命题为真,必需对在给定集合的每一个元素x,使命题p(x)为真;但要推断一个全称命题为假时,只要在给定的集合中找到一个元素x,使命题p(x)为假。即全称命题与存在性命题之间有可能转化,它们之间并不是对立的关系。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服