ImageVerifierCode 换一换
格式:DOCX , 页数:2 ,大小:63.17KB ,
资源ID:3824229      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3824229.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【优教通-同步备课】高中数学(北师大版)选修2-2教案:第1章-教材解读:反证法.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【优教通-同步备课】高中数学(北师大版)选修2-2教案:第1章-教材解读:反证法.docx

1、反证法教材解读一、重点学问梳理反证法(间接证明)是不同于综合法与分析法(直接证明)的又一种证明方法,它不是从原命题的条件逐步推得命题成立。反证法就是一种常用的间接证明方法。反证法的证明过程可以概括为“否定推理否定”,即从否定结论开头,经过正确的推理,导致规律冲突,从而达到新的否定(即确定原命题)的过程。用反证法证明“若p则q”的过程可以用以下框图表示:确定条件p否定结论q导 致规律冲突“若p则q” 为 真“p且q”为 假 这个过程包括下面三个步骤: (1)反设假设命题的结论不成立,即假定原结论的反面为真; (2)归谬从反设和已知条件动身,经过一系列正确的规律推理,得出冲突结果; (3)存真由冲

2、突结果,断定反设不真,从而确定原结论成立。说明:1、反证法的原理:否定之否定等于确定2、反证法的实质:原命题和它的逆否命题是等价命题 二、疑、难点解析利用反证法证明不等式,如何依据题设条件和不等式的结论制造冲突是本节内容的一个难点。例1、若、,且,求证:与至少有一个小于证明:假设与均不小于,即,且 、,且 , 这与已知相冲突假设不成立,故原命题正确点评:证明的结论中若有“至多”“至少”等字词时,常可以考虑用反证法解决。 留意:(1)利用反证法证明时,第一步“假设”不要写成“设”。(2)应用反证法证题要充分理解两个否定:第一个否定是指“否定结论”;其次个否定是指“规律推理结果否定了假设”。例2、

3、已知函数 试用反证法证明方程f(x)=0没有负数根。 证法1 假设存在满足,则 ,即与假设冲突, 故方程f(x)=0没有负数根。证法2 假设存在满足, 若,则, ,这与冲突; 若,则, ,这与冲突。 故方程f(x)=0没有负数根。 点评: 命题中含有否定词时,常用反证法。留意:(1)由以上证明过程可以看出,用反证法证明问题时,推出冲突的途径多种多样。确定要明确冲突的所在,不行稀里糊涂。总之无论是在日常生活中还是在数学中,都经常应用反证法.而且对于处理正面简洁性问题、至多至少性问题、否定性问题、唯一性问题、存在性问题以及无理性问题等,反证法都具有特殊的优越性。反证法的证题过程其实是证明原命题“若

4、p则q”的否定“若p则 q”是错误的我们在学习反证法时会毁灭两方面的困难: “否定结论”部分,把握不清结论的“反”是什么。使用反证法证明问题时,精确地做出反设(即否定结论)是正确运用反证法的前提,常用的“结论词”与“反设词”列表如下:词语等于大于小于都是确定是至少有一个至少n个至多一个至多n个只有一个P或qP且q对所有x成立词语的否定不等于小于等于大于等于不都是确定不是一个也没有至多n-1个至少两个至少n+1个没有或至少有两个P且 qP或q存在某个x不成立2、“导出冲突”部分,有时与已知条件相冲突;有时与假设相冲突;而有时又是与某个定义、公理、定理或事实相冲突,还有的是自相冲突因此我们有时弄不明白到底是与什么冲突

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服