ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:63.51KB ,
资源ID:3823839      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3823839.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(2021高考数学(理)(江西)二轮复习专题训练:1-1-1函数图象与性质及函数与方程.docx)为本站上传会员【快乐****生活】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高考数学(理)(江西)二轮复习专题训练:1-1-1函数图象与性质及函数与方程.docx

1、 第一部分 专题整合突破 专题一 函数与导数、不等式 第1讲 函数图象与性质及函数与方程 一、选择题 1.(2022·北京朝阳期末考试)函数f(x)=+的定义域为 (  ). A.[0,+∞) B.(1,+∞) C.[0,1)∪(1,+∞) D.[0,1) 解析 由题意知 ∴f(x)的定义域为[0,1)∪(1,+∞). 答案 C 2.(2022·新课标全国卷Ⅱ改编)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)= (  ). A.1 B.-1 C.3 D.-3 解析 由于f(x)的图象关于直线x=2对称,所以f(x)=f(4-x

2、),f(-x)=f(4+x),又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3. 答案 C 3.(2022·天津卷)函数f(x)=log(x2-4)的单调递增区间为 (  ). A.(0,+∞) B.(-∞,0) C.(2,+∞) D.(-∞,-2) 解析 由x2-4>0,得x<-2或x>2,所以函数f(x)的定义域为(-∞,-2)∪(2,+∞),又y=x2-4的减区间为(-∞,0),∴函数f(x)=log(x2-4)的增区间为(-∞,-2),故选D. 答案 D 4.(2022·济南模拟)函数f(x)=(x-1)ln|x|的图象可能为

3、 (  ). 解析 函数f(x)的定义域为(-∞,0)∪(0,+∞),可排解B.当x∈(0,1)时,x-1<0,ln x<0,所以(x-1)ln x>0,可排解D;当x∈(1,+∞)时,x-1>0,ln x>0,所以(x-1)ln x>0,可排解C.故只有A项满足,选A. 答案 A 5.(2021·新课标全国卷Ⅰ)已知函数f(x)=若|f(x)|≥ax,则a的取值范围是 (  ). A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0] 解析 当x≤0时,f(x)=-x2+2x=-(x-1)2+1≤0,所以|f(x)|≥ax化简为x2-2x≥ax,即x2≥(

4、a+2)x,由于x≤0,所以a+2≥x恒成立,所以a≥-2;当x>0时,f(x)=ln(x+1)>0,所以|f(x)|≥ax化简为ln(x+1)≥ax恒成立,由函数图象可知a≤0,综上,当-2≤a≤0时,不等式|f(x)|≥ax恒成立,故选D. 答案 D 二、填空题 6.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上单调递增.若实数a满足f(log2 a)+f(loga)≤2f(1),则a的取值范围是________. 解析 ∵f(x)在R上是偶函数, ∴f=f(-log2a)=f(log2a), 由题设,得2f(log2a)≤2f(1),即f(log2a)≤f(1)

5、 又f(x)在[0,+∞)上单调递增, ∴|log2a|≤1,解之得≤a≤2. 答案  7.(2022·广州测试)已知函数f(x)=2ax2+2x-3.假如函数y=f(x)在区间[-1,1]上有零点,则实数a的取值范围为____________. 解析 若a=0,则f(x)=2x-3. f(x)=0⇒x=∉[-1,1],不合题意,故a≠0. 下面就a≠0分两种状况争辩: (1)当f(-1)·f(1)≤0时,f(x)在[-1,1]上至少有一个零点,即(2a-5)(2a-1)≤0,解得≤a≤. (2)当f(-1)·f(1)>0时,f(x)在[-1,1]上有零点的条件是 解得a

6、>.综上,实数a的取值范围为. 答案  8.已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有<0,给出下列命题: ①f(2)=0; ②直线x=-4是函数y=f(x)图象的一条对称轴; ③函数y=f(x)在[-4,4]上有四个零点; ④f(2 014)=0. 其中全部正确命题的序号为________. 解析 令x=-2,得f(-2+4)=f(-2)+f(2),解得f(-2)=0,由于函数f(x)为偶函数,所以f(2)=0,①正确;由于f(-4+x)=f(-4+x+4)=f(x),f(-4-x)=

7、f(-4-x+4)=f(-x)=f(x),所以f(-4+x)=f(-4-x),即x=-4是函数f(x)的一条对称轴,②正确;当x1,x2∈[0,2],且x1≠x2时,都有<0,说明函数f(x)在[0,2]上是单调递减函数,又f(2)=0,因此函数f(x)在[0,2]上只有一个零点,由偶函数知函数f(x)在[-2,0]上也只有一个零点,由f(x+4)=f(x),知函数的周期为4,所以函数f(x)在(2,4]与[-4,-2)上也单调,因此,函数在[-4,4]上只有2个零点,③错;对于④,由于函数的周期为4,即有f(2)=f(6)=f(10)=…=f(2 014)=0,④正确. 答案 ①②④ 三

8、解答题 9.已知函数f(x)=2x,g(x)=+2. (1)求函数g(x)的值域; (2)求满足方程f(x)-g(x)=0的x的值. 解 (1)g(x)=+2=|x|+2, 由于|x|≥0,所以0<|x|≤1, 即2<g(x)≤3,故g(x)的值域是(2,3]. (2)由f(x)-g(x)=0,得2x--2=0, 当x≤0时,明显不满足方程, 当x>0时,由2x--2=0, 整理得(2x)2-2·2x-1=0,(2x-1)2=2, 故2x=1±,由于2x>0, 所以2x=1+, 即x=log2(1+). 10.已知二次函数f(x)=ax2+bx+1(a>0),F(

9、x)=若f(-1)=0,且对任意实数x均有f(x)≥0成立. (1)求F(x)的表达式; (2)当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求k的取值范围. 解 (1)∵f(-1)=0,∴a-b+1=0, ∴b=a+1, ∴f(x)=ax2+(a+1)x+1. ∵f(x)≥0恒成立, ∴ 即 ∴a=1,从而b=2, ∴f(x)=x2+2x+1, ∴F(x)= (2)由(1)知,g(x)=x2+2x+1-kx=x2+(2-k)x+1. ∵g(x)在[-2,2]上是单调函数, ∴≤-2或≥2, 解得k≤-2或k≥6. 所以k的取值范围是(-∞,-2]∪

10、[6,+∞). 11.(2022·绵阳模拟)已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数. (1)求k的值; (2)设g(x)=log4,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a的取值范围. 解 (1)由函数f(x)是偶函数可知,f(x)=f(-x), 所以log4(4x+1)+kx=log4(4-x+1)-kx, 所以log4=-2kx,即x=-2kx对一切x∈R恒成立,所以k=-. (2)函数f(x)与g(x)的图象有且只有一个公共点,即方程log4(4x+1)-x=log4有且只有一个实根,即方程2x+=a·2x-a有且只有一个实根. 令t=2x>0,则方程(a-1)t2-at-1=0有且只有一个正根. ①当a=1时,则t=-不合题意; ②当a≠1时,Δ=0,解得a=或-3. 若a=,则t=-2,不合题意;若a=-3,则t=; ③若方程有一个正根与一个负根,即<0, 解得a>1. 综上所述,实数a的取值范围是{-3}∪(1,+∞).

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服