ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:62.47KB ,
资源ID:3823189      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3823189.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(【复习参考】2021年高考数学(理)提升演练:函数模型及其应用.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【复习参考】2021年高考数学(理)提升演练:函数模型及其应用.docx

1、 2021届高三数学(理)提升演练:函数模型及其应用 一、选择题 1.某学校开展争辩性学习活动,一组同学获得了下面的一组试验数据: x 1.99 3 4 5.1 6.12 y 1.5 4.04 7.5 12 18.01 现预备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 (  ) A.y=2x-2        B.y=()x C.y=log2x D.y=(x2-1) 2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优待方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.

2、现某人方案购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是(  ) A.不能确定 B.①②同样省钱 C.②省钱 D.①省钱 3.某地2002年底人口为500万,人均住房面积为6 m2,假如该城市人口平均每年增长率为1%.问为使2022年底该城市人均住房面积增加到7 m2,平均每年新增住房面积至少为________万 m2.(1.0110≈1.1045)(  ) A.90 B.87 C.85 D.80 4.设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用

3、了30分钟,则小王从动身到返回原地所经过的路程y和其所用的时间x的函数图象为(  ) 5.光线通过一块玻璃,其强度要失掉原来的,要使通过玻璃的光线强度为原来的以下,至少需要重叠这样的玻璃块数是(lg3=0.477 1)(  ) A.10 B.11 C.12 D.13 6.将长度为2的铁丝分成两段,分别围成一个正方形和一个圆,要使正方形与圆的面积之和最小,正方形的周长应为(  ) A.         B. C. D. 二、填空题 7.在不考虑空气阻力的状况下,设火箭的最大速度是v m/s,燃料的质量为M kg,火箭(除燃料外)的质量为m

4、 kg,三者之间的函数关系是v=2 000·ln(1+M/m).当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s. 8.某居民小区收取冬季供暖费,依据规定,住户可以从以下两种方案中任选其一: (1)依据使用面积缴纳,每平方米4元; (2)依据建筑面积缴纳,每平方米3元. 李明家的使用面积为60平方米.假如他家选择第(2)种方案缴纳供暖费较少,那么它的建筑面积最多不超过________平方米. 9.里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 00

5、0,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍. 三、解答题 10.某市出租车的计价标准是:3 km以内(含3 km)10元;超过3 km但不超过18 km的部分1元/km;超出18 km的部分2元/km. (1)假如某人乘车行驶了20 km,他要付多少车费?某人乘车行驶了x km,他要付多少车费? (2)假如某人付了22元的车费,他乘车行驶了多远? 11.某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一

6、辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金定为3 600元时,能租出多少辆车? (2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 12.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨. (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本; (2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?

7、 详解答案 一、选择题 1.解析:直线是均匀的,故选项A不是;指数函数y=()x是单调递减的,也不符合要求;对数函数y=log2x的增长是缓慢的,也不符合要求;将表中数据代入选项D中,基本符合要求. 答案:D 2.解析:方法①用款为4×20+26×5=80+130=210(元) 方法②用款为(4×20+30×5)×92%=211.6(元) ∵210<211.6,故方法①省钱. 答案:D 3.解析:到2022年底该城市人口有500×(1+1%)10, 则≈86.6(万 m2). 答案:B 4.解析:留意到y为“小王从动身到返回原地所经过的路程”而不

8、是位移,用定性分析法不难得到答案为D. 答案:D 5.解析:设原光线的强度为a,重叠x块玻璃后,通过玻璃的光线强度为y,则 y=a(1-)x(x∈N*), 令y<a,即a(1-)x<a, ∴()x<,∴x>. ∵==≈10.4. 即x>10.4. 答案:B 6.解析:设铁丝分成的两段长分别为x,y(x>0,y>0),x+y=2.面积之和为S=()2+π()2=x2+=x2-x+,当S取得最小值时,x=. 答案:D 二、填空题 7.解析:∵2 000·ln(1+M/m)≤12 000,∴≤e6-1. 答案:e6-1 8.解析:按方案(1),李明家需缴240元,故设李明

9、家建筑面积为x平方米,则3x≤240,解得x≤80. 答案:80 9.解析:由lg1000-lg0.001=6,得此次地震的震级为6级.由于标准地震的振幅为0.001,设9级地震最大振幅为A9,则lgA9-lg0.001=9,解得A9=106,同理5级地震最大振幅A5=102,所以9级地震的最大振幅是5级的10 000倍. 答案:6 10 000 三、解答题 10.解:(1)乘车行驶了20 km,付费分三部分,前3 km付费10(元),3 km到18 km付费(18-3)×1=15(元),18 km到20 km付费(20-18)×2=4(元),总付费10+15+4=29(元). 设

10、付车费y元,当018时,车费y=25+2(x-18)=2x-11. (2)付出22元的车费,说明此人乘车行驶的路程大于3 km,且小于18 km,前3 km付费10元,余下的12元乘车行驶了12 km,故此人乘车行驶了15 km. 11.解:(1)当每辆车的月租金定为3 600元时,未租出的车辆数为:=12,所以这时租出了88辆车. (2)设每辆车的月租金定为x元,则租赁公司的月收益为:f(x)=(100-)(x-150)-×50,整理得f(x)=-+162x-21 000=-(x-4 050

11、)2+307 050. 所以,当x=4 050时,f(x)最大,其最大值为f(4 050)=307 050.即当每辆车的月租金定为4 050元时,租赁公司的月收益最大,最大收益为307 050元. 12.解:(1)每吨平均成本为(万元). 则=+-48≥2 -48=32, 当且仅当=,即x=200时取等号. ∴年产量为200吨时,每吨平均成本最低为32万元. (2)设年获得总利润为R(x)万元, 则R(x)=40x-y=40x-+48x-8 000 =-+88x-8 000 =-(x-220)2+1 680(0≤x≤210). ∵R(x)在[0,210]上是增函数, ∴x=210时,R(x)有最大值为 -(210-220)2+1 680=1 660. ∴年产量为210吨时,可获得最大利润1 660万元.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服