6、切线的斜率为________.
解析 y′=ex,设切点的坐标为(x0,y0)则=ex0,即=ex0,∴x0=1.因此切点的坐标为(1,e),切线的斜率为e.
答案 (1,e) e
9.已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在x=1处的导数f′(1)=________.
解析 ∵f(x)=2f(2-x)-x2+8x-8,
∴x=1时,f(1)=2f(1)-1+8-8,
∴f(1)=1,即点(1,1),在曲线y=f(x)上.
又∵f′(x)=-2f′(2-x)-2x+8,
x=1时,f′(1)=-2f′(1)-2+
7、8,
∴f′(1)=2.
答案 2
10.同学们经过市场调查,得出了某种商品在2011年的价格y(单位:元)与时间t(单位:月)的函数关系为:y=2+(1≤t≤12),则10月份该商品价格上涨的速度是______元/月.
解析 ∵y=2+(1≤t≤12),
∴y′=′=2′+′
==.
由导数的几何意义可知10月份该商品的价格的上涨速度应为y′|t=10==3.
因此10月份该商品价格上涨的速度为3元/月.
答案 3
三、解答题
11.求下列函数的导数:
(1)y=(2x+1)n,(n∈N*); (2)y=ln (x+);
(3)y=; (4)y=2xsin(2x+5
8、).
解 (1)y′=n(2x+1)n-1·(2x+1)′=2n(2x+1)n-1.
(2)y′=·=.
(3)∵y==1+∴y′=.
(4)y′=2sin(2x+5)+4xcos(2x+5).
12.设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(1)求a、b的值,并写出切线l的方程;
(2)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x19、
解析 (1)f′(x)=3x2+4ax+b,g′(x)=2x-3,由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线,故有f(2)=g(2)=0,f′(2)=g′(2)=1,由此解得a=-2,b=5;
切线l的方程为:x-y-2=0.
(2)由(1)得f(x)+g(x)=x3-3x2+2x,依题意得:方程x(x2-3x+2-m)=0有三个互不相等的根0,x1,x2,故x1,x2是方程x2-3x+2-m=0的两个相异实根,所以Δ=9-4(2-m)>0⇒m>-;
又对任意的x∈[x1,x2],f(x)+g(x)10、)-mx1<-m成立,即0<-m⇒m<0,由韦达定理知:x1+x2=3>0,x1x2=2-m>0,故00,则f(x)+g(x)-mx=x(x-x1)(x-x2)≤0;
又f(x1)+g(x1)-mx1=0,
所以函数在x∈[x1,x2]上的最大值为0,于是当m<0时对任意的x∈[x1,x2],f(x)+g(x)11、)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,并求此定值.
(1)解 方程7x-4y-12=0可化为y=x-3,
当x=2时,y=.又f′(x)=a+,
于是解得故f(x)=x-.
(2)证明 设P(x0,y0)为曲线上任一点,由f′(x)=1+知,曲线在点P(x0,y0)处的切线方程为y-y0=·(x-x0),即y-=(x-x0).
令x=0得,y=-,从而得切线与直线x=0交点坐标为.
令y=x,得y=x=2x0,从而得切线与直线y=x的交点坐标为(2x0,2x0).
所以点P(x0,y0)处的切线与直线x=0,y=x所围成的三角形面积为|2x0|=6.
12、
故曲线y=f(x)上任一点处的切线与直线x=0和直线y=x所围成的三角形面积为定值,此定值为6.
14.设f(x)=ln(x+1)++ax+b(a,b∈R,a,b,为常数),曲线y=f(x)与直线y=x在(0,0)点相切.
(1)求a,b的值;
(2)证明:当00时,2