ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:52.56KB ,
资源ID:3822497      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3822497.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【a199****6536】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【a199****6536】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021高考数学(福建-理)一轮作业:3.3-导数的应用(二).docx)为本站上传会员【a199****6536】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高考数学(福建-理)一轮作业:3.3-导数的应用(二).docx

1、3.3 导数的应用(二)一、选择题1函数f(x)的定义域为开区间(a,b),导函数f(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有微小值点()A1个 B2个 C3个 D4个答案A2若函数yf(x)可导,则“f(x)0有实根”是“f(x)有极值”的 ()A必要不充分条件 B充分不必要条件C充要条件 D既不充分也不必要条件答案A3已知函数f(x)x3ax2(a6)x1有极大值和微小值,则实数a的取值范围是()A(1,2) B(,3)(6,)C(3,6) D(,1)(2,)解析f(x)3x22ax(a6),由于函数有极大值和微小值,所以f(x)0有两个不相等的实数根,所以4

2、a243(a6)0,解得a3或a6.答案B4已知函数f(x)x3ax24在x2处取得极值,若m、n1,1,则f(m)f(n)的最小值是()A13 B15C10 D15解析:求导得f(x)3x22ax,由函数f(x)在x2处取得极值知f(2)0,即342a20,a3.由此可得f(x)x33x24,f(x)3x26x,易知f(x)在(1,0)上单调递减,在(0,1)上单调递增,当m1,1时,f(m)minf(0)4.又f(x)3x26x的图象开口向下,且对称轴为x1,当n1,1时,f(n)minf(1)9.故f(m)f(n)的最小值为13.答案:A5函数yxex,x0,4的最小值为()A0 B.

3、C. D.解析yexxexex(x1)y与y随x变化状况如下:x0(0,1)1(1,4)4y0y0当x0时,函数yxex取到最小值0.答案A6设aR,函数f(x)exaex的导函数是f(x),且f(x)是奇函数若曲线yf(x)的一条切线的斜率是,则切点的横坐标为()Aln2 Bln2C. D.解析 f(x)exaex,这个函数是奇函数,由于函数f(x)在0处有定义,所以f(0)0,故只能是a1.此时f(x)exex,设切点的横坐标是x0,则ex0ex0,即2(ex0)23ex020,即(ex02)(2ex01)0,只能是ex02,解得x0ln2.正确选项为A.答案 A 7设函数f(x)ax2b

4、xc(a,b,cR)若x1为函数f(x)ex的一个极值点,则下列图象不行能为yf(x)的图象是()解析若x1为函数f(x)ex的一个极值点,则易得ac.因选项A、B的函数为f(x)a(x1)2,则f(x)exf(x)exf(x)(ex)a(x1)(x3)ex,x1为函数f(x)ex的一个极值点,满足条件;选项C中,对称轴x0,且开口向下,a0,b0,f(1)2ab0,也满足条件;选项D中,对称轴x1,且开口向上,a0,b2a,f(1)2ab0,与图冲突,故答案选D.答案D二、填空题8已知f(x)2x36x23,对任意的x2,2都有f(x)a,则a的取值范围为_解析:由f(x)6x212x0,得

5、x0,或x2.又f(2)37,f(0)3,f(2)5,f(x)max3,又f(x)a,a3.答案:3,)9函数f(x)x22ln x的最小值为_解析由f(x)2x0,得x21.又x0,所以x1.由于0x1时,f(x)0,x1时f(x)0,所以当x1时,f(x)取微小值(微小值唯一)也即最小值f(1)1.答案110若f(x)x33ax23(a2)x1有极大值和微小值,则a的取值范围_解析f(x)3x26ax3(a2),由已知条件0,即36a236(a2)0,解得a2.答案(,1)(2,)11设函数f(x)ax33x1(xR),若对于任意x1,1,都有f(x)0成立,则实数a的值为_解析(构造法)

6、若x0,则不论a取何值,f(x)0明显成立;当x0,即x(0,1时,f(x)ax33x10可化为a.设g(x),则g(x),所以g(x)在区间上单调递增,在区间上单调递减,因此g(x)maxg4,从而a4.当x0,即x1,0)时,同理a.g(x)在区间1,0)上单调递增,g(x)ming(1)4,从而a4,综上可知a4.答案4【点评】 本题考查了分类争辩思想构造函数,同时利用导数的学问来解决.12已知函数f(x)的自变量取值区间为A,若其值域也为A,则称区间A为f(x)的保值区间若g(x)xmlnx的保值区间是2,),则m的值为_解析 g(x)1,当x2时,函数g(x)为增函数,因此g(x)的

7、值域为2mln2,),因此2mln22,故mln2.答案 ln2三、解答题13已知函数f(x)ax3bx2cx在点x0处取得极大值5,其导函数yf(x)的图象经过(1,0),(2,0)点,如图所示(1)求x0的值;(2)求a,b,c的值解析(1)由f(x)随x变化的状况x(,1)1(1,2)2(2,)f(x)00可知当x1时f(x)取到极大值5,则x01(2)f(x)3ax22bxc,a0由已知条件x1,x2为方程3ax22bxc0,的两根,因此解得a2,b9,c12.14已知函数f(x)x3ax2bxc,曲线yf(x)在点x1处的切线为l:3xy10,若x时,yf(x)有极值(1)求a,b,

8、c的值;(2)求yf(x)在3,1上的最大值和最小值解析:(1)由f(x)x3ax2bxc,得f(x)3x22axb,当x1时,切线l的斜率为3,可得2ab0.当x时,yf(x)有极值,则f0,可得4a3b40.由解得a2,b4.由于切点的横坐标为x1,f(1)4,1abc4,c5.a2,b4,c5.(2)由(1)可得f(x)x32x24x5,f(x)3x24x4,令f(x)0,得x12,x2.当x变化时,y、y的取值及变化如下表:x3(3,2)21y00y8单调递增13单调递减单调递增4yf(x)在3,1上的最大值为13,最小值为.15设f(x)x3x22ax.(1)若f(x)在上存在单调递

9、增区间,求a的取值范围;(2)当0a2时,f(x)在1,4上的最小值为,求f(x)在该区间上的最大值解析(1)由f(x)x2x2a22a,当x时,f(x)的最大值为f2a;令2a0,得a.所以,当a时,f(x)在上存在单调递增区间即f(x)在上存在单调递增区间时,a的取值范围是(2)令f(x)0,得两根x1,x2.所以f(x)在(,x1),(x2,)上单调递减,在(x1,x2)上单调递增当0a2时,有x11x24,所以f(x)在1,4上的最大值为f(x2),又f(4)f(1)6a0,即f(4)f(1)所以f(x)在1,4上的最小值为f(4)8a.得a1,x22,从而f(x)在1,4上的最大值为

10、f(2).16设函数f(x)xaln x(aR)(1)争辩f(x)的单调性;(2)若f(x)有两个极值点x1和x2,记过点A(x1,f(x1),B(x2,f(x2)的直线的斜率为k.问:是否存在a,使得k2a?若存在,求出a的值;若不存在,请说明理由思路分析先求导,通分后发觉f(x)的符号与a有关,应对a进行分类,依据方程的判别式来分类解析(1)f(x)的定义域为(0,)f(x)1.令g(x)x2ax1,其判别式a24.当|a|2时,0,f(x)0.故f(x)在(0,)上单调递增当a2时,0,g(x)0的两根都小于0.在(0,)上,f(x)0.故f(x)在(0,)上单调递增当a2时,0,g(x

11、)0的两根为x1,x2.当0xx1时,f(x)0,当x1xx2时,f(x)0;当xx2时,f(x)0.故f(x)分别在(0,x1),(x2,)上单调递增,在(x1,x2)上单调递减(2)由(1)知,a2.由于f(x1)f(x2)(x1x2)a(ln x1ln x2),所以,k1a.又由(1)知,x1x21,于是k2a.若存在a,使得k2a,则1.即ln x1ln x2x1x2.由x1x21得x22ln x20(x21)(*)再由(1)知,函数h(t)t2ln t在(0,)上单调递增,而x21,所以x22ln x212 ln 10.这与(*)式冲突故不存在a,使得k2a.【点评】 本题充分体现了分类争辩思想.近几年新课标高考常考查含参数的导数问题,难度中等偏上,考生最简洁失分的就是对参数的分类标准把握不准,导致分类不全等

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服