ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:56.34KB ,
资源ID:3822163      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3822163.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(江苏省南京市2021届高三第三次模拟考试-数学-Word版含答案.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

江苏省南京市2021届高三第三次模拟考试-数学-Word版含答案.docx

1、南京市2021届高三班级第三次模拟考试 数 学 2021.05留意事项:1本试卷共4页,包括填空题(第1题第14题)、解答题(第15题第20题)两部分本试卷满分为160分,考试时间为120分钟2答题前,请务必将自己的姓名、班级、学校写在答题纸上试题的答案写在答题纸上对应题目的答案空格内考试结束后,交回答题纸参考公式样本数据x1,x2,xn的方差s2 (xi)2,其中 xi锥体的体积公式:VSh,其中S为锥体的底面积,h为锥体的高一、填空题:本大题共14小题,每小题5分,共70分请把答案填写在答题纸相应位置上1已知复数z1,其中i为虚数单位,则z的模为 2经统计,在银行一个营业窗口每天上午9点钟

2、排队等候的人数及相应概率如下:排队人数012345概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是 3若变量x,y满足约束条件则z2xy的最大值是 NS40开头k1kk1S0Y输出k结束SS2k(第4题图)4右图是一个算法流程图,则输出k的值是 5如图是甲、乙两位射击运动员的5次训练成果(单位:环)的茎叶图,则 甲 乙 8 9 7 8 9 3 1 0 6 9789(第5题图)成果较为稳定(方差较小)的运动员是 6记不等式x2x60的解集为集合A,函数ylg(xa)的定义域为集合B若“xA”是“xB”的充分条件,则实数a的取值范围为 7在平面直角坐标系

3、xOy中,过双曲线C:x21的右焦点F作x轴的垂线l,则l与双曲线C的两条渐近线所围成的三角形的面积是 8已知正六棱锥PABCDEF的底面边长为2,侧棱长为4,则此六棱锥的体积为 9在ABC中, ABC120,BA2,BC3,D,E是线段AC的三等分点,则的值为 10记等差数列an的前n项和为Sn若Sk18,Sk0,Sk110,则正整数k 11若将函数f(x)sin(wx)(w0)的图象向左平移个单位后,所得图象对应的函数为偶函数 ,则实数w的最小值是 12已知x,y为正实数,则的最大值为 13在平面直角坐标系xOy中,圆C的方程为(x1)2(y1)29,直线l:ykx3与圆C相交于A,B两点

4、,M为弦AB上一动点,以M为圆心,2为半径的圆与圆C总有公共点,则实数k的取值范围为 14已知a,t为正实数,函数f(x)x22xa,且对任意的x0,t,都有f(x)a,a若对每一个正实数a,记t的最大值为g(a),则函数g(a)的值域为 二、解答题:本大题共6小题,共计90分请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤15(本小题满分14分)在ABC中,内角A,B,C所对的边分别为a,b,c已知acosCccosA2bcosA(1)求角A的值;(2)求sinBsinC的取值范围16(本小题满分14分)在四棱锥PABCD中,BCAD,PAPD,AD2BC,ABPB, E为

5、PA的中点 (第16题图)PABCDE (1)求证:BE平面PCD; (2)求证:平面PAB平面PCD17(本小题满分14分)如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽视不计地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM60m点P从最低点A处按逆时针方向转动到最高点B处,记AOPq,q (0,)(1)当q 时,求点P距地面的高度PQ;(2)试确定q 的值,使得MPN取得最大值(第17题图)AMNBOPQq18(本小题满分16分)在平面直角坐标系xOy中,设中心在坐标原点的椭圆C的左、右焦点分别为F1、F2,右准线l:xm1与x轴的交点为B,BF2m (

6、1)已知点(,1)在椭圆C上,求实数m的值;(2)已知定点A(2,0)若椭圆C上存在点T,使得,求椭圆C的离心率的取值范围;当m1时,记M为椭圆C上的动点,直线AM,BM分别与椭圆C交于另一点P,Q,xyAOBMPQ(第18题图)F2F1l若 ,m,求证:m为定值19(本小题满分16分)已知函数f(x)x2xt,t0,g(x)lnx(1)令h(x)f(x)g(x),求证:h(x)是增函数;(2)直线l与函数f(x),g(x)的图象都相切对于确定的正实数t,争辩直线l的条数,并说明理由20(本小题满分16分)已知数列an的各项均为正数,其前n项的和为Sn,且对任意的m,nN*,都有(SmnS1)

7、24a2ma2n (1)求的值;(2)求证:an为等比数列;(3)已知数列cn,dn满足|cn|dn|an,p(p3)是给定的正整数,数列cn,dn的前p项的和分别为Tp,Rp,且TpRp,求证:对任意正整数k(1kp),ckdk南京市2021届高三班级第三次模拟考试 数学附加题 2021.05留意事项:1附加题供选修物理的考生使用2本试卷共40分,考试时间30分钟3答题前,考生务必将自己的姓名、班级、学校写在答题纸上试题的答案写在答题纸上对应题目的答案空格内考试结束后,交回答题纸21【选做题】在A、B、C、D四小题中只要选做2题,每小题10分,共计20分请在答卷纸指定区域内作答解答应写出文字

8、说明、证明过程或演算步骤A选修41:几何证明选讲如图,AB,AC是O的切线,ADE是O的割线,求证:BE CDBD CEADBCEO(第21A题图)B选修42:矩阵与变换已知矩阵A,直线l:xy40在矩阵A对应的变换作用下变为直线l:xy2a0(1)求实数a的值;(2)求A2C选修44:坐标系与参数方程在极坐标系中,设圆C:r4 cosq 与直线l:q (rR)交于A,B两点,求以AB为直径的圆的极坐标方程D选修45:不等式选讲已知实数x,y满足xy,求证:2x 2y3【必做题】第22题、第23题,每题10分,共计20分请在答卷纸指定区域内作答解答应写出文字说明、证明过程或演算步骤22(本小题

9、满分10分)PABCD如图,四棱锥PABCD中,PA平面ABCD,ADBC,ABAD,BC,AB1,BDPA2(1)求异面直线BD与PC所成角的余弦值;(2)求二面角APDC的余弦值23(本小题满分10分)已知集合A是集合Pn1,2,3,n (n3,nN*)的子集,且A中恰有3个元素,同时这3个元素的和是3的倍数记符合上述条件的集合A的个数为f(n)(1)求f(3),f(4);(2)求f(n)(用含n的式子表示)南京市2021届高三第三次模拟考试 数学参考答案及评分标准 2021.05说明:1本解答给出的解法供参考假如考生的解法与本解答不同,可依据试题的主要考查内容比照评分标准制订相应的评分细

10、则2对计算题,当考生的解答在某一步毁灭错误时,假如后续部分的解答未转变该题的内容和难度,可视影响的程度打算给分,但不得超过该部分正确解答应得分数的一半;假如后续部分的解答有较严峻的错误,就不再给分3解答右端所注分数,表示考生正确做到这一步应得的累加分数4只给整数分数,填空题不给中间分数一、填空题:本大题共14小题,每小题5分,共70分 1 20.74 34 46 5甲6(,3 74 812 9 109 11 12 13,) 14(0,1)2二、解答题:本大题共6小题,共90分15解:(1)由于acosCccosA2bcosA,所以sinAcosCsinCcosA2sinBcosA,即sin(A

11、C)2sinBcosA由于ABC,所以sin(AC)sinB从而sinB2sinBcosA 4分由于sinB0,所以cosA由于0A,所以A 7分(2)sinBsinCsinBsin(B)sinBsincosBcossinBsinBcosBsin(B) 11分由于0B,所以B所以sinBsinC的取值范围为(, 14分16证明:(1)取PD的中点F,连接EF,CFPABCDEF(第16题图)由于E为PA的中点,所以EFAD,EFAD由于BCAD,BCAD,所以EFBC,EFBC所以四边形BCFE为平行四边形所以BECF 4分由于BE平面PCD,CF平面PCD,所以BE平面PCD 6分(2)由于

12、ABPB,E为PA的中点,所以PABE由于BECF,所以PACF 9分由于PAPD,PD平面PCD,CF平面PCD,PDCFF,所以PA平面PCD 12分由于PA平面PAB,所以平面PAB平面PCD 14分17解:(1)由题意,得PQ5050cosq 从而,当q 时,PQ5050cos75即点P距地面的高度为75m 4分(2)(方法一)由题意,得AQ50sinq ,从而MQ6050sinq ,NQ30050sinq 又PQ5050cosq ,所以tanNPQ ,tanMPQ 6分从而tanMPNtan(NPQMPQ) 9分令g(q ) ,q (0,),则g(q) ,q (0,)由g(q)0,得

13、sinq cosq 10,解得q 11分当q (0,)时,g(q )0,g(q )为增函数;当q (,p)时,g(q )0,g(q )为减函数,所以,当q 时,g(q )有极大值,也为最大值由于0MPQNPQ,所以0MPN,从而当g(q )tanMPN取得最大值时,MPN取得最大值即当q 时,MPN取得最大值 14分(方法二)以点A为坐标原点,AM为x轴建立平面直角坐标系,则圆O的方程为 x2(y50)2502,即x2y2100y0,点M(60,0),N(300,0)设点P的坐标为 (x0,y0),所以Q (x0,0),且x02y02100y00从而tanNPQ ,tanMPQ 6分从而tan

14、MPNtan(NPQMPQ) 由题意知,x050sinq ,y05050cosq ,所以tanMPN 9分(下同方法一)18解:(1)设椭圆C的方程为 1(ab0)由题意,得 解得 所以椭圆方程为1 由于椭圆C过点(,1),所以1,解得m2或m (舍去)所以m2 4分(2)设点T(x,y)由,得(x2)2y22(x1)2y2,即x2y22 6分由 得y2m2m因此0m2mm,解得1m2所以椭圆C的离心率e, 10分(方法一)设M(x0,y0),P(x1,y1),Q(x2,y2)则(x02,y0),(x12,y1)由l, 得 从而 12分由于y021,所以(ly1)21即l2(y12)2l(l1

15、)x12(l1)210由于 y121,代入得2l (l1)x13l24l10由题意知,l1,故x1,所以x0 同理可得x0 14分因此,所以lm6 16分(方法二)设M(x0,y0),P(x1,y1),Q(x2,y2)直线AM的方程为y(x2)将y(x2)代入y21,得(x02)2y)x24yx4y(x02)2 0(*)由于y021,所以(*)可化为(2x03)x24yx3x4x00由于x0x1,所以x1同理x2 14分由于l,m,所以lm6即m为定值6 16分19解:(1)由h(x)f(x)g(x)x2xtlnx,得h (x)2x1,x0由于2x22,所以h (x)0, 从而函数h(x)是增

16、函数 3分(2)记直线l分别切f(x),g(x)的图象于点(x1,x12x1t),(x2,lnx2),由f(x)2x1,得l的方程为y(x12x1t)(2x11)(xx1),即y(2x11)xx12t由g(x),得l的方程为ylnx2(xx2),即y xlnx21所以(*) 消去x1得lnx2(t1)0 (*) 7分令F(x)lnx(t1),则F(x),x0由F(x)0,解得x1当0x1时,F(x)0,当x1时,F(x)0,所以F(x)在(0,1)上单调递减,在(1,)上单调递增,从而F(x)minF(1)t 9分当t0时,方程(*)只有唯一正数解,从而方程组(*)有唯一一组解,即存在唯一一条

17、满足题意的直线; 11分当t0时,F(1)0,由于F(et1)ln(et1)(t1)0,故方程(*)在(1,)上存在唯一解; 13分令k(x)lnx1(x1),由于k (x)0,故k (x)在(0,1上单调递减,故当0x1时,k (x)k (1)0,即lnx1,从而lnx (t1)()2t所以F()()2t0,又01,故方程(*)在(0,1)上存在唯一解所以当t0时,方程(*)有两个不同的正数解,方程组(*)有两组解即存在两条满足题意的直线综上,当t0时,与两个函数图象同时相切的直线的条数为1;当t0时,与两个函数图象同时相切的直线的条数为2 16分20解:(1)由(SmnS1)24a2na2

18、m,得(S2S1)24a,即(a22a1)24a由于a10,a20,所以a22a1a2,即2 3分证明:(2)(方法一)令m1,n2,得(S3S1)24a2a4,即(2a1a2a3)24a2a4,令mn2,得S4S12a4,即2a1a2a3a4所以a44a28a1又由于2,所以a34a1 6分由(SmnS1)24a2na2m,得(Sn1S1)24a2na2,(Sn2S1)24a2na4两式相除,得,所以2即Sn2S12(Sn1S1),从而Sn3S12(Sn2S1)所以an32an2,故当n3时,an是公比为2的等比数列又由于a32a24a1,从而ana12 n1,nN*明显,ana12 n1满

19、足题设,因此an是首项为a1,公比为2的等比数列 10分(方法二)在(SmnS1)24a2na2m中,令mn,得S2nS12a2n 令mn1,得S2n1S12 , 在中,用n1代n得,S2n2S12a2n2 ,得a2n122a2n2(), ,得a2n22a2n222(), 由得a2n1 8分代入,得a2n12a2n;代入得a2n22a2n1,所以2又2,从而ana12 n1,nN*明显,ana12 n1满足题设,因此an是首项为a1,公比为2的等比数列 10分(3)由(2)知,ana12 n1由于|cp|dp|a12p1,所以cpdp或cpdp若cpdp,不妨设cp0,dp0,则Tpa12p1

20、(a12p2a12p3a1)a12p1a1(2p11)a10Rpa12p1(a12p2a12p3a1)a12p1a1(2p11)a10这与TpRp冲突,所以cpdp从而Tp1Rp1由上证明,同理可得cp1dp1如此下去,可得cp2dp2,cp3dp3,c1d1即对任意正整数k(1kp),ckdk 16分南京市2021届高三第三次模拟考试 数学附加题参考答案及评分标准 2021.0521【选做题】在A、B、C、D四小题中只能选做2题,每小题10分,共20分 A选修41:几何证明选讲证明:由于AB是O的切线,所以ABDAEB又由于BADEAB,所以BADEAB所以 5分同理,. 由于AB,AC是O

21、的切线,所以ABAC因此,即BE CDBD CE 10分B选修42:矩阵与变换解:(1)设直线l上一点M0(x0,y0)在矩阵A对应的变换作用下变为l 上点M(x,y),则, 所以 3分代入l 方程得(ax0y0)(x0ay0)2a0,即(a1)x0(a1)y02a0由于(x0,y0)满足x0y040,所以4,解得a2 6分(2)由A,得A2 10分C选修44:坐标系与参数方程解: 以极点为坐标原点,极轴为x轴的正半轴,建立直角坐标系,则由题意,得圆C的直角坐标方程 x2y24x0,直线l的直角坐标方程 yx 4分由 解得或 所以A(0,0),B(2,2)从而以AB为直径的圆的直角坐标方程为(

22、x1)2(y1)22,即x2y22x2y 7分将其化为极坐标方程为:r22r(cosqsinq)0,即r2(cosqsinq) 10分D选修45:不等式选讲证明:由于xy,所以xy0,从而左边(xy)(xy)2y32y2y3右边 即原不等式成立 10分【必做题】第22题、第23题,每题10分,共20分22解:(1)由于PA平面ABCD,AB平面ABCD,AD平面ABCD,所以PAAB,PAAD 又ADAB,故分别以AB,AD,AP所在直线为x轴,y轴,z轴建立空间直角坐标系PABCDxyz依据条件得AD所以B(1,0,0),D(0,0),C(1,0),P(0,0,2) 从而(1,0),(1,2

23、) 3分设异面直线BD,PC所成角为q ,则cosq |cos,| 即异面直线BD与PC所成角的余弦值为 5分(2)由于AB平面PAD,所以平面PAD的一个法向量为 (1,0,0) 设平面PCD的一个法向量为n(x,y,z), 由n,n ,(1,2),(0,2),得 解得不妨取z3,则得n(2,2,3) 8分设二面角APDC的大小为j,则cosjcos,n 即二面角APDC的余弦值为 10分23解:(1)f(3)1,f(4)2; 2分(2)设A0mm3p,pN*,p,A1mm3p1,pN*,p,A2mm3p2,pN*,p,它们所含元素的个数分别记为A0,A1,A2 4分当n3k时,则A0A1A2kk1,2时,f(n)(C)3k3;k3时,f(n)3C(C)3k3k2k从而 f(n)n3n2n,n3k,kN* 6分当n3k1时,则A0k1,A1A2kk2时,f(n)f(5)2214;k3时,f(n)f(8)1133220;k3时,f(n)C2CC (C)2k33k2k1; 从而 f(n)n3n2n,n3k1,kN* 8分当n3k2时,A0k1,A1k1,A2kk2时,f(n)f(4)2112;k3时,f(n)f(7)132213;k3时,f(n)2CC(C)2 Ck3k25k2;从而 f(n)n3n2n,n3k2,kN*所以f(n) 10分

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服