ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:219KB ,
资源ID:3817626      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3817626.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(导数证明不等式教学文案.doc)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

导数证明不等式教学文案.doc

1、导数证明不等式精品文档利用导数证明不等式的两种通法利用导数证明不等式是高考中的一个热点问题,利用导数证明不等式主要有两种通法,即函数类不等式证明和常数类不等式证明。下面就有关的两种通法用列举的方式归纳和总结。一、函数类不等式证明函数类不等式证明的通法可概括为:证明不等式()的问题转化为证明(),进而构造辅助函数,然后利用导数证明函数的单调性或证明函数的最小值(最大值)大于或等于零(小于或等于零)。例1 已知,求证:证明这个变式题可采用两种方法:第一种证法:运用本例完全相同的方法证明每个不等式以后再放缩或放大,即证明不等式以后,根据来证明不等式;第二种证法:直接构造辅助函数和,其中然后证明各自的

2、单调性后再放缩或放大(如:)例2 求证:技巧一、利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点。二、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。1、利用题目所给函数证明 【例1】 已知函数,求证:当时,恒有如果是函数在区间上的最大(小)值,则有(或),那么要证不等式,只要求函数的最大值不超过就可得证2、直接作差构造函数证明【例2】已知函数 求证:在区间上,函数的图象在函数的图象的下方;首先根据题意构造出一个函数(可以移项,使右边为零,将移项

3、后的左式设为函数),并利用导数判断所设函数的单调性,再根据函数单调性的定义,证明要证的不等式。3、换元后作差构造函数证明【例3】证明:对任意的正整数n,不等式 都成立. 当在上单调递增,则时,有如果,要证明当时,那么,只要令,就可以利用的单调增性来推导也就是说,在可导的前提下,只要证明即可4、从条件特征入手构造函数证明【例4】若函数y=在R上可导且满足不等式x恒成立,且常数a,b满足ab,求证:ab由条件移项后,容易想到是一个积的导数,从而可以构造函数,求导即可完成证明。若题目中的条件改为,则移项后练习1. 设求证:当时,恒有2. 已知定义在正实数集上的函数其中a0,且, 求证:3. 已知函数

4、,求证:对任意的正数、, 恒有4.是定义在(0,+)上的非负可导函数,且满足0,对任意正数a、b,若a b,则必有 ( )(A)af (b)bf (a)(B)bf (a)af (b)(C)af (a)f (b)(D)bf (b)f (a)二、常数类不等式证明常数类不等式证明的通法可概括为:证明常数类不等式的问题等价转化为证明不等式的问题,在根据的不等式关系和函数的单调性证明不等式。例3已知求证:利用导数证明常数类不等式的关键是经过适当的变形,将不等式证明的问题转化为函数单调性证明问题,其中关键是构造辅助函数,如何构造辅助函数也是这种通法运用的难点和关键所在。构造辅助函数关键在于不等式转化为左右两边是相同结构的式子这样根据“相同结构”可以构造辅助函数。例4 已知,求证:练习1 当时,求证:2 已知a,b为实数,并且eab,其中e是自然对数的底,证明:3已知函数(1)求函数的最小值;(2)若,求证:4 求证:收集于网络,如有侵权请联系管理员删除

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服