1、 第4讲 转化与化归思想 转化与化归思想方法,就是在争辩和解决有关数学问题时接受某种手段将问题通过变换使之转化,进而得到解决的一种方法.一般总是将简洁的问题通过变换转化为简洁的问题,将难解的问题通过变换转化为简洁求解的问题,将未解决的问题通过变换转化为已解决的问题. 转化与化归思想在高考中占有格外重要的地位,数学问题的解决,总离不开转化与化归,如未知向已知的转化、新学问向旧学问的转化、简洁问题向简洁问题的转化、不同数学问题之间的相互转化、实际问题向数学问题的转化等.各种变换、具体解题方法都是转化的手段,转化的思想方法渗透到全部的数学教学内容和解题过程中. 1.转化与化归的指导思想
2、 (1)把什么问题进行转化,即化归对象. (2)化归到何处去,即化归目标. (3)如何进行化归,即化归方法. 化归与转化思想是一切数学思想方法的核心. 2.常见的转化与化归的方法 转化与化归思想方法用在争辩、解决数学问题时,思维受阻或寻求简洁方法或从一种状况转化到另一种情形,也就是转化到另一种情境使问题得到解决,这种转化是解决问题的有效策略,同时也是猎取成功的思维方式.常见的转化方法有: (1)直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题. (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较简洁的函数、方程、不等式问题转化为易于解决的基本问题.
3、3)数形结合法:争辩原问题中数量关系(解析式)与空间形式(图形)关系,通过相互变换获得转化途径. (4)等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的. (5)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题、结论适合原问题. (6)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题. (7)坐标法:以坐标系为工具,用计算方法解决几何问题是转化方法的一个重要途径. (8)参数法:引进参数,使原问题转化为生疏的形式进行解决. (9)补集法:假如正面解决原问题有困难,可把原问题的结果看做集合A,而把包含该问题的整体问题的结果类比为全集U,通
4、过解决全集U及补集∁UA获得原问题的解决,体现了正难则反的原则. 热点一 特殊与一般的转化 例1 已知函数f(x)=(a>0且a≠1),则f+f+…+f的值为________. 答案 解析 由于直接求解较困难,可探求一般规律, ∵f(x)+f(1-x)=+ =+ =+==1, ∴f+f+…+f =++…++f=1×49+=. 思维升华 一般问题特殊化,使问题处理变得直接、简洁.特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果. (1)在△ABC中,角A、B、C所对的边分别为a、b、c,若a、b、c成等差数列,则=______
5、 (2)已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f=________. 答案 (1) (2)0 解析 (1)依据题意,所求数值是一个定值,故可利用满足条件的直角三角形进行计算. 令a=3,b=4,c=5,则△ABC为直角三角形, 且cos A=,cos C=0, 代入所求式子,得==. (2)由于xf(x+1)=(1+x)f(x), 所以=, 使f(x)特殊化,可设f(x)=xg(x), 其中g(x)是周期为1的奇函数,再将g(x)特殊化, 可设g(x)=sin 2πx,则f(x)=xsin 2π
6、x,
阅历证f(x)=xsin 2πx满足题意,则f=0.
热点二 函数、方程、不等式之间的转化
例2 (1)定义运算:(aD○+b)⊗x=ax2+bx+2,若关于x的不等式(aD○+b)⊗x<0的解集为{x|1 7、2+bx+2=0的两实根,
1+2=-,1×2=,解得
由(-3D○+1)⊗x=-3x2+x+2<0,得3x2-x-2>0,
解得x<-或x>1.
(2)∵f(x+1)≤f(x+3)-2≤f(x)+3-2=f(x)+1,
f(x+1)≥f(x+4)-3≥f(x+2)+2-3≥f(x)+4-3=f(x)+1,
∴f(x)+1≤f(x+1)≤f(x)+1.
∴f(x+1)=f(x)+1.
∴数列{f(n)}为等差数列.
∴f(2 014)=f(1)+2 013×1=2 014.
思维升华 函数、方程与不等式就像“一胞三兄弟”,解决方程、不等式的问题需要函数的挂念,解决函数的问题 8、需要方程、不等式的挂念,因此借助于函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值(值域)问题,从而求出参变量的范围.
(1)若关于x的方程9x+(4+a)·3x+4=0有解,则实数a的取值范围是________.
(2)设f(x)是定义在R上的单调增函数,若f(1-ax-x2)≤f(2-a)对任意a∈[-1,1]恒成立,则x的取值范围为______________.
答案 (1)(-∞,-8] (2)(-∞,-1]∪[0,+∞)
解析 (1)设t=3x,则原命题等价于关于t的方程
t2+(4+a)t+4=0有正解,分别变量a得
a+4=-,
∵t 9、>0,∴-≤-4,
∴a≤-8,即实数a的取值范围是(-∞,-8].
(2)∵f(x)在R上是增函数,
∴由f(1-ax-x2)≤f(2-a),
可得1-ax-x2≤2-a,a∈[-1,1],
∴a(x-1)+x2+1≥0,对a∈[-1,1]恒成立.
令g(a)=(x-1)a+x2+1,
则当且仅当g(-1)=x2-x+2≥0,g(1)=x2+x≥0恒成立,
解之,得x≥0或x≤-1.
故实数x的取值范围为x≤-1或x≥0.
热点三 正难则反的转化
例3 已知三条抛物线:y=x2+4ax-4a+3,y=x2+(a-1)x+a2,y=x2+2ax-2a中至少有一条与x轴相交 10、求实数a的取值范围.
解 令y=0,由
解得-0,求实数p的取值范围.
解 假如在[-1,1]内没有值满足f(c)>0,
则⇒ 11、
⇒p≤-3或p≥,
取补集为-3 12、则A∩B等于( )
A.[0,2] B.(1,3)
C.[1,3) D.(1,4)
答案 C
解析 由|x-1|<2,解得-1 13、x)是以2π为周期的周期函数.
又f()=f(4π-)=f(-),
f=f+sin,
∴f=f-.
∵当0≤x<π时,f(x)=0,∴f=0,
∴f=f=.故选A.
3.(2022·陕西)若圆C的半径为1,其圆心与点(1,0)关于直线y=x对称,则圆C的标准方程为____________.
答案 x2+(y-1)2=1
解析 圆C的圆心为(0,1),半径为1,标准方程为x2+(y-1)2=1.
4.(2022·山东)已知实数x,y满足ax
©2010-2025 宁波自信网络信息技术有限公司 版权所有
客服电话:4009-655-100 投诉/维权电话:18658249818