ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:240.46KB ,
资源ID:3815370      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3815370.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(四川省绵阳市南山中学2022届高三零诊考试数学试题(文)-Word版含答案.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

四川省绵阳市南山中学2022届高三零诊考试数学试题(文)-Word版含答案.docx

1、2021年8月绵阳南山中学2021年秋季2022届零诊考试数 学 试 题(文科)命题范围:绵阳市统考一诊内容 命题人:张家寿 审题人:王怀修一、选择题:每小题5分,共12小题,共60分.1. 已知集合M0,1,2,3,4,N1,3,5,PMN,则P的真子集共有 ()A.1个 B.3个 C.5个 D.7个2. 已知函数,则() 3. 公比为2的等比数列的各项都是正数,且,则等于()A.1 B.2 C.4 D.84曲线在点处的切线方程为()A B C D5. 已知函数,则下列结论中正确的是()A函数的最小正周期为2 B函数的最大值为1C将函数的图象向右平移单位后得的图象D将函数的图象向左平移单位后

2、得的图象6如下左图,在平面直角坐标系中,AC平行于x轴,四边形ABCD是边长为1的正方形,记四边形位于直线xt(t0)左侧图形的面积为f(t),则f(t)的大致图象是()7. 下列推断正确的是()A. 若命题为真命题,命题为假命题,则命题“”为真命题B. 命题“若,则”的否命题为“若,则”C. “”是“”的充分不必要条件D. 命题“”的否定是“ ”8. 设,且 则+ln2的单调减区间为() A. B. C. D.9. 定义一种运算,若函数,是方程的解,且,则的值() A恒为负值 B等于 C恒为正值 D不大于10. 设实数x,y满足,则的取值范围是() A. B. C. D. 11. 已知是内一

3、点,且,若、的面积分别为、,则的最小值是()A. 18 B. 16 C. 9 D. 412. 已知正实数,则的取值范围是()A. B. C. D. 二、填空题:共4小题,每小题5分,共20分.13设是定义在R上的奇函数,当时,且,则不等式的解集为 .14已知有两个极值点、,且在区间(0,1)上有极大值,无微小值,则的取值范围是 .15已知中,内角的对边的边长为,且,则的值为 .16. 已知定义在上的奇函数满足,且时,. 现有以下甲,乙,丙,丁四个结论:甲:;乙:函数在上是增函数;丙:函数关于直线对称;丁:若,则关于的方程在上全部根之和为-8. 则其中正确结论的序号是_三、解答题:共6小题,共7

4、0分解答应写出文字说明、证明过程或演算步骤.17(10分)已知ABC的角A、B、C所对的边分别是a、b、c,设向量m(a,b),n(sinB,sinA),p(b2,a2)(1)若mn,请判定ABC的外形;(2)若mp,边长c2,角C,求ABC的面积18(10分)已知等比数列an中,a1a310,前4项和为40.(1)求数列an的通项公式;(2)若等差数列bn的各项为正,其前n项和为Tn,且T315,又a1b1,a2b2,a3b3成等比数列,求Tn.19(12分)已知二次函数为偶函数,且集合A=为单元素集合.(1)求的解析式;(2)设函数,若函数在上单调,求实数的取值范围20(12分)南山中学近

5、几年规模不断壮大,同学住宿特殊紧急,学校拟用1000万元购一块空地,方案在该空地上建筑一栋至少8层,每层2000平方米的同学电梯公寓经测算,假如将公寓建为x(x8)层,则每平方米的平均建筑费用为56048x(单位:元)(1)写出拟修公寓每平米的平均综合费用y关于建筑层数x的函数关系式;(2)该公寓应建筑多少层时,可使公寓每平方米的平均综合费用最少?最少值是多少?(结果精确到1元)(注:平均综合费用平均建筑费用平均购地费用,平均购地费用)21. (12分)已知函数f(x).(1)推断f(x)的奇偶性;(2)求f(x)的周期和单调区间;(3)若关于x的不等式f(x)m2-m有解,求实数m的取值范围

6、22. (14分)已知函数(1)求函数的单调区间和最小值;(2)若函数在上是最小值为,求的值;(3)当(其中=2.718 28是自然对数的底数).零诊参考答案(数文)一、选择题: BDBCC CDB A A AD二、填空题:13. ; 14. ; 15. 0; 16. 甲,丁三、解答题17.解:(1)mn,asinAbsinB,即ab,其中R是ABC外接圆半径,ab.ABC为等腰三角形(2)由题意可知mp0,即a(b2)b(a2)0.abab.由余弦定理可知,4a2b2ab(ab)23ab,即(ab)23ab40.ab4(舍去ab1),SabsinC4sin18.解:(1)设等比数列an的公比

7、为q,则ana1qn13n1.等比数列an的通项公式为an3n1.(2)设等差数列bn的公差为d,则T3b1b2b33b215,b25.又a1b1,a2b2,a3b3成等比数列,(a2b2)2(a1b1)(a3b3),即(35)2(1b1)(9b3),64(6d)(14d)d10或d2.(舍去)或Tnnb1d3n2n22n.19. (1)(2)若在上单调递增,则在上恒成立,即在上恒成立,即若在上单调递减,则在上恒成立,即在上恒成立,即20. 解(1)依题意得y(56048x)56048x ( x8,xN* );(2)提示:均值不等式失效,求导或由x=10时,y=1540;x=11时,y=154

8、3.故该公寓应建筑10层时,可使公寓每平方米的平均综合费用最少,最小值为1540元21. 解:(1)由cos2x0得2xk,kZ,解得x,kZ,f(x)的定义域为x|x,kZf(x)的定义域关于原点对称当x,kZ时,f(x)3cos2x1,f(x)是偶函数(2)f(x)3cos2x131cos2x.T,f(x)的最小正周期为.增区间为,减区间为(3)当x(kZ)时,0cos2x1且cos2x,13cos2x12且3cos2x1,f(x)的值域为y|1y或y2由关于x的不等式f(x)m2-m有解得2m2-m解得1m222.解:(1) 同理,令f(x)单调递增区间为,单调递减区间为. 由此可知 (2)当时,F(x)在上单调递增,舍去;当时,在单调递减, , 舍去; 若,在单调递减,在单调递增,.综上所述: (3)由(I)可知当时,有,即.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服