ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:683.26KB ,
资源ID:3815175      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3815175.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【丰****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【丰****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021年高考数学(四川专用-理)一轮复习考点突破:第2篇-第8讲-函数与方程.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021年高考数学(四川专用-理)一轮复习考点突破:第2篇-第8讲-函数与方程.docx

1、第8讲函数与方程最新考纲1结合二次函数的图象,了解函数的零点与方程根的联系,推断一元二次方程根的存在性及根的个数2依据具体函数的图象,能够用二分法求相应方程的近似解.知 识 梳 理1函数的零点(1)函数的零点的概念对于函数yf(x),把使f(x)0的实数x叫做函数yf(x)的零点(2)函数的零点与方程的根的关系方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点(3)零点存在性定理假如函数yf(x)满足:在闭区间a,b上连续;f(a)f(b)0;则函数yf(x)在(a,b)上存在零点,即存在c(a,b),使得f(c)0,这个c也就是方程f(x)0的根2二分法对于在区间a,

2、b上连续不断且f(a)f(b)0的函数yf(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫做二分法辨 析 感 悟函数零点概念的理解及应用(1)函数的零点就是函数的图象与x轴的交点()(2)对于定义域内的两个变量x1,x2,若f(x1)f(x2)0,则函数f(x)有零点()(3)若f(x)在区间a,b上连续不断,且f(a)f(b)0,则f(x)在(a,b)内没有零点()(4)若函数yf(x)在区间a,b上的图象是连续不断的一条曲线,且f(a)f(b)0,则函数yf(x)在区间(a,b)内至少有一个零点()(5)(2021天津卷改编

3、)函数f(x)2x|log0.5x|1的零点个数为2.()(6)(2021广州模拟改编)已知函数f(x)x2xa在区间(0,1)上有零点,则实数a的取值范围是(2,0)()感悟提升1一点提示函数的零点不是点,是方程f(x)0的根,如(1)2三个防范一是严格把握零点存在性定理的条件,如(2)中没有强调连续曲线;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件,如(3);三是函数f(x)在a,b上单调且f(a)f(b)0,则f(x)在a,b上只有一个零点.考点一函数零点的求解与推断【例1】 (1)设x0是方程ln xx4的解,则x0属于()A(0,1

4、) B(1,2) C(2,3) D(3,4)(2)(2022郑州一模)函数f(x)的零点个数是_解析(1)令f(x)ln xx4,则f(1)30,f(2)ln 220,f(3)ln 310,x0(2,3)(2)当x0时,令g(x)ln x,h(x)x22x.画出g(x)与h(x)的图象如图:故当x0时,f(x)有2个零点当x0时,由4x10,得x,综上函数f(x)的零点个数为3.答案(1)C(2)3规律方法 (1)直接求零点:令f(x)0,假如能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间a,b上是连续不断的曲线,且f(a)f(b)0,还必需结合函数的图象与性质

5、(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点【训练1】 (1)函数f(x)2xx32在(0,1)内的零点个数是()A0 B1 C2 D3(2)(2021重庆卷)若abc,则函数f(x)(xa)(xb)(xb)(xc)(xc)(xa)的两个零点分别位于区间()A(a,b)和(b,c)内 B(,a)和(a,b)内C(b,c)和(c,)内 D(,a)和(c,)内解析(1)由于f(x)2xln 23x20,所以函数f(x)2xx32在(0,1)上递增,且f(0)10210,f(1)2

6、1210,所以有1个零点(2)由于ab0,f(b)(bc)(ba)0.因此有f(a)f(b)0,f(b)f(c)0)(1)若yg(x)m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)f(x)0有两个相异实根解(1)法一x0时,g(x)x22e,等号成立的条件是xe,故g(x)的值域是2e,),因而只需m2e,则yg(x)m就有零点m的取值范围是2e,)法二作出g(x)x(x0)的大致图象如图:可知若使yg(x)m有零点,则只需m2e.m的取值范围是2e,)(2)若g(x)f(x)0有两个相异的实根,即g(x)与f(x)的图象有两个不同的交点,作出g(x)x(x0)的大致图象f(x

7、)x22exm1(xe)2m1e2,其图象的对称轴为xe,开口向下,最大值为m1e2.故当m1e22e,即me22e1时,g(x)与f(x)有两个交点,即g(x)f(x)0有两个相异实根m的取值范围是(e22e1,)规律方法 函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不行解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简洁,这也体现了数形结合思想的应用【训练2】 (2022鞍山模拟)已知函数f(x)若方程f(x)a0有三个不同的实数根,则实数a的取值范围是()A(1,3) B(0,3) C(0,2)

8、D(0,1)解析画出函数f(x)的图象如图所示,观看图象可知,若方程f(x)a0有三个不同的实数根,则函数yf(x)的图象与直线ya有3个不同的交点,此时需满足0a1,故选D.答案D考点三与二次函数有关的零点分布【例3】 是否存在这样的实数a,使函数f(x)x2(3a2)xa1在区间1,3上恒有一个零点,且只有一个零点?若存在,求出a的取值范围;若不存在,说明理由审题路线由f(x)在1,3上只有一个零点f(x)0在1,3上有且只有一个实数根计算知0恒成立令f(1)f(3)0求出a的范围对端点值检验得出结论解令f(x)0,则(3a2)24(a1)9a216a8920,即f(x)0有两个不相等的实

9、数根,若实数a满足条件,则只需f(1)f(3)0即可f(1)f(3)(13a2a1)(99a6a1)4(1a)(5a1)0,a或a1.检验:(1)当f(1)0时,a1,所以f(x)x2x.令f(x)0,即x2x0,得x0或x1.方程在1,3上有两个实数根,不合题意,故a1.(2)当f(3)0时,a,此时f(x)x2x.令f(x)0,即x2x0,解得x或x3.方程在1,3上有两个实数根,不合题意,故a.综上所述,a的取值范围是(1,)规律方法 解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组【训练3

10、】 已知关于x的二次方程x22mx2m10.(1)若方程有两根,其中一根在区间(1,0)内,另一根在区间(1,2)内,求m的范围;(2)若方程两根均在区间(0,1)内,求m的范围解(1)由条件,抛物线f(x)x22mx2m1与x轴的交点分别在区间(1,0)和(1,2)内,如图(1)所示,得即m.故m的取值范围是.(2)抛物线与x轴交点均落在区间(0,1)内,如图(2)所示,列不等式组即0.f(x)minf(1)4a4,a1.故函数f(x)的解析式为f(x)x22x3.(2)g(x)4ln xx4ln x2(x0),g(x)1.当x变化时,g(x),g(x)的取值变化状况如下:x(0,1)1(1,3)3(3,)g(x)00g(x)极大值微小值当0x3时,g(x)g(1)40.又由于g(x)在(3,)单调递增,因而g(x)在(3,)上只有1个零点故g(x)在(0,)只有1个零点.同学用书第32页

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服