ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:112.21KB ,
资源ID:3812025      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3812025.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2022届(新课标)高考数学(理)5年高考真题备考试题库:第8章--第7节--抛物线.docx)为本站上传会员【丰****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届(新课标)高考数学(理)5年高考真题备考试题库:第8章--第7节--抛物线.docx

1、2010~2022年高考真题备选题库 第8章 平面解析几何 第7节 抛物线 1.(2022湖南,5分)如图,正方形ABCD和正方形DEFG的边长分别为a,b(a0)经过C,F两点,则=________. 解析:由正方形的定义可知BC=CD,结合抛物线的定义得点D为抛物线的焦点,所以|AD|=p=a,D,F,将点F的坐标代入抛物线的方程得b2=2p=a2+2ab,变形得2--1=0,解得=1+或=1-(舍去),所以=1+. 答案:1+ 2.(2022新课标全国Ⅰ,5分)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点

2、Q是直线PF与C的一个交点,若=4,则|QF|=(  ) A. B. C.3 D.2 解析:过点Q作QQ′⊥l交l于点Q′,由于=4,所以|PQ|∶|PF|=3∶4,又焦点F到准线l的距离为4,所以|QF|=|QQ′|=3.故选C. 答案:C 3.(2022新课标全国Ⅱ,5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为(  ) A. B. C. D. 解析:易知抛物线中p=,焦点F,直线AB的斜率k=,故直线AB的方程为y=,代入抛物线方程y2=3x,整理得x2-x+=0.设A(x1,

3、y1),B(x2,y2),则x1+x2=.由抛物线的定义可得弦长|AB|=x1+x2+p=+=12,结合图象可得O到直线AB的距离d=·sin 30°=,所以△OAB的面积S=|AB|·d=. 答案:D 4.(2022辽宁,5分)已知点A(-2,3)在抛物线C:y2=2px的准线上,过点A的直线与C在第一象限相切于点B,记C的焦点为F,则直线BF的斜率为(  ) A. B. C. D. 解析:∵A(-2,3)在抛物线y2=2px的准线上,∴-=-2,∴p=4,∴y2=8x,设直线AB的方程为x=k(y-3)-2 ①,将①与y2=8x联立,即得y2-8ky+24k+16

4、=0 ②,则Δ=(-8k)2-4(24k+16)=0,即2k2-3k-2=0,解得k=2或k=-(舍去),将k=2代入①②解得,即B(8,8),又F(2,0),∴kBF==,故选D. 答案:D 5.(2022山东,14分)已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点,过点A的直线l交C于另一点B,交x轴的正半轴于点D,且有|FA|=|FD|.当点A的横坐标为3时,△ADF为正三角形. (1)求C的方程; (2)若直线l1∥l,且l1和C有且只有一个公共点E, ①证明直线AE过定点,并求出定点坐标; ②△ABE的面积是否存在最小值?若存在,恳求出最小值;

5、若不存在,请说明理由. 解:由题意知F. 设D(t,0)(t>0),则FD的中点为. 由于|FA|=|FD|,由抛物线的定义知3+=, 解得t=3+p或t=-3(舍去). 由=3,解得p=2. 所以抛物线C的方程为y2=4x. (2)①由(1)知F(1,0), 设A(x0,y0)(x0y0≠0),D(xD,0)(xD>0), 由于|FA|=|FD|,则|xD-1|=x0+1, 由xD>0得xD=x0+2,故D(x0+2,0). 故直线AB的斜率kAB=-. 由于直线l1和直线AB平行, 设直线l1的方程为y=-x+b, 代入抛物线方程得y2+y-=0, 由题意Δ=

6、+=0,得b=-. 设E(xE,yE),则yE=-,xE=. 当y≠4时,kAE==-=, 可得直线AE的方程为y-y0=(x-x0), 由y=4x0,整理可得y=(x-1),直线AE恒过点F(1,0).当y=4时,直线AE的方程为x=1,过点F(1,0),所以直线AE过定点F(1,0). ②由①知直线AE过焦点F(1,0), 所以|AE|=|AF|+|FE|=(x0+1)+=x0++2. 设直线AE的方程为x=my+1, 由于点A(x0,y0)在直线AE上,故m=. 设B(x1,y1).直线AB的方程为y-y0=-(x-x0), 由于y0≠0,可得x=-y+2+x0,

7、代入抛物线方程得y2+y-8-4x0=0. 所以y0+y1=-,可求得y1=-y0-,x1=+x0+4. 所以点B到直线AE的距离为 d=== 4. 则△ABE的面积S=×4x0++2≥16,当且仅当=x0,即x0=1时等号成立. 所以△ABE的面积的最小值为16. 6.(2022陕西,13分)如图,曲线C由上半椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1的离心率为. (1)求a,b的值; (2)过点B的直线l与C1,C2分别交于点P,Q(均异于点A,B),若AP⊥AQ,求直线l的方程.

8、解:(1)在C1,C2的方程中,令y=0,可得b=1,且A(-1,0),B(1,0)是上半椭圆C1的左、右顶点. 设C1的半焦距为c,由=及a2-c2=b2=1得a=2. ∴a=2,b=1. (2)由(1)知,上半椭圆C1的方程为+x2=1(y≥0). 易知,直线l与x轴不重合也不垂直,设其方程为y=k(x-1)(k≠0), 代入C1的方程,整理得 (k2+4)x2-2k2x+k2-4=0. (*) 设点P的坐标为(xP,yP), ∵直线l过点B,∴x=1是方程(*)的一个根. 由根与系数的关系,得xP=,从而yP=, ∴点P的坐标为. 同理,由 得点Q的坐标为(-k-

9、1,-k2-2k). ∴=(k,-4),=-k(1,k+2). ∵AP⊥AQ,∴·=0,即[k-4(k+2)]=0, ∵k≠0,∴k-4(k+2)=0,解得k=-. 经检验,k=-符合题意, 故直线l的方程为y=-(x-1). 7.(2021新课标全国Ⅱ,5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5.若以MF为直径的圆过点(0,2),则C的方程为(  ) A.y2=4x或y2=8x          B.y2=2x或y2=8x C.y2=4x或y2=16x D.y2=2x或y2=16x 解析:本题考查抛物线与圆的有关学问,

10、意在考查考生综合运用学问的力气. 由已知得抛物线的焦点F,设点A(0,2),抛物线上点M(x0,y0),则=,=.由已知得,·=0,即y-8y0+16=0,因而y0=4,M. 由|MF|=5得, =5,又p>0,解得p=2或p=8,故选C. 答案: C 8.(2021北京,5分)若抛物线y2=2px的焦点坐标为(1,0),则p=________,准线方程为________. 解析:本题主要考查抛物线的方程及其简洁的几何性质,意在考查考生的运算求解力气. 由于抛物线的焦点坐标为(1,0),所以=1,p=2,准线方程为x=-=-1. 答案:2 x=-1 9.(2021江西,5分)抛

11、物线x2=2py(p>0)的焦点为F,其准线与双曲线-=1相交于A,B两点,若△ABF为等边三角形,则p=________. 解析:本题考查抛物线、双曲线的标准方程及简洁的几何性质,意在考查考生的数形结合思想以及转化与化归的力气.由x2=2py(p>0)得焦点F,准线l为y=-,所以可求得抛物线的准线与双曲线-=1的交点A,B,所以|AB|= ,则|AF|=|AB|= ,所以=sin ,即=,解得p=6. 答案:6 10.(2021湖南,13分)过抛物线E:x2=2py(p>0)的焦点F作斜率分别为k1,k2的两条不同直线l1,l2,且k1+k2=2,l1与E相交于点A,B,l2与E相交

12、于点C,D,以AB,CD为直径的圆M,圆N(M,N为圆心)的公共弦所在直线记为l. (1)若k1>0,k2>0,证明:·<2p2; (2)若点M到直线l的距离的最小值为,求抛物线E的方程. 解:本小题主要考查抛物线的定义、标准方程及其几何意义,圆的方程及两圆的公共弦的求法,点到直线的距离公式,直线与圆锥曲线的位置关系,向量的数量积,基本不等式的应用,二次函数的最值的求法,考查运算求解力气和函数方程思想、转化化归思想和数形结合思想.属难题. (1)由题意,抛物线E的焦点为F, 直线l1的方程为y=k1x+. 由得x2-2pk1x-p2=0. 设A,B两点的坐标分别为(x1,y1),

13、x2,y2),则x1,x2是上述方程的两个实数根.从而x1+x2=2pk1,y1+y2=k1(x1+x2)+p=2pk+p. 所以点M的坐标为,=(pk1,pk). 同理可得点N的坐标为,=(pk2,pk). 于是·=p2(k1k2+kk). 由题设,k1+k2=2,k1>0,k2>0,k1≠k2, 所以0

14、pk1x-p(2k+1)y-p2=0. 同理可得圆N的方程为 x2+y2-2pk2x-p(2k+1)y-p2=0. 于是圆M,圆N的公共弦所在直线l的方程为 (k2-k1)x+(k-k)y=0. 又k2-k1≠0,k1+k2=2,则l的方程为x+2y=0. 由于p>0,所以点M到直线l的距离 d== =. 故当k1=-时,d取最小值.由题设,=,解得p=8. 故所求的抛物线E的方程为x2=16y. 11.(2022山东,5分)已知双曲线C1:-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为

15、  ) A.x2=y             B.x2=y C.x2=8y D.x2=16y 解析:双曲线的渐近线方程为y=±x,由于== =2,所以=,所以双曲线的渐近线方程为y=±x.抛物线的焦点坐标为(0,),所以=2,所以p=8,所以抛物线方程为x2=16y. 答案:D 12.(2011新课标全国,5分)已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|=12,P为C的准线上一点,则△ABP的面积为(  ) A.18 B.24 C.36 D.48 解析:设抛物线方程为y2=2px,则焦点坐标为(,0),将x=代入y2=2px可得

16、y2=p2,|AB|=12,即2p=12,∴p=6.点P在准线上,到AB的距离为p=6,所以△PAB的面积为×6×12=36. 答案:C 13.(2011辽宁,5分)已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  ) A. B.1 C. D. 解析:依据抛物线定义与梯形中位线定理,得线段AB中点到y轴的距离为:(|AF|+|BF|)-=-=. 答案:C 14.(2022天津,5分)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|

17、点M的横坐标是3,则p=________.  解析:由题意知,抛物线的一般方程为y2=2px(p>0),焦点F(,0),准线x=-,设准线与x轴的交点为A.由抛物线定义可得|EM|=|MF|,所以△MEF是正三角形,在直角三角形EFA中,|EF|=2|FA|,即3+=2p,得p=2. 答案:2 15.(2022陕西,5分)右图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽______米. 解析:以抛物线的顶点为原点,对称轴为y轴建立直角坐标系,设抛物线的方程为x2=-2py,则点(2,-2)在抛物线上,代入可得p=1,所以x2=-2y.当y=-3时,

18、x2=6,所以水面宽为2. 答案:2 16.(2010浙江,4分)设抛物线y2=2px(p>0)的焦点为F,点A(0,2).若线段FA的中点B在抛物线上,则B到该抛物线准线的距离为________. 解析:抛物线的焦点F的坐标为(,0),线段FA的中点B的坐标为(,1),代入抛物线方程得1=2p×, 解得p=,故点B的坐标为(,1),故点B到该抛物线准线的距离为+=. 答案: 17.(2011新课标全国,12分)在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y=-3上,M点满足∥,·=·,M点的轨迹为曲线C. (1)求C的方程; (2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值. 解:(1)设M(x,y),由已知得B(x,-3),A(0,-1). 所以=(-x,-1-y),=(0,-3-y), =(x,-2). 再由题意可知(+)·=0, 即(-x,-4-2y)·(x,-2)=0 所以曲线C的方程为y=x2-2. (2)设P(x0,y0)为曲线C:y=x2-2上一点,由于y ′=x,所以l的斜率为x0. 因此直线l的方程为y-y0=x0(x-x0), 即x0x-2y+2y0-x=0. 则O点到l的距离d=.又y0=x-2,所以 d==(+)≥2, 当x0=0时取等号,所以O点到l距离的最小值为2.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服