ImageVerifierCode 换一换
格式:DOCX , 页数:5 ,大小:254.57KB ,
资源ID:3811205      下载积分:6 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3811205.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(2021高考数学(广东专用-理)一轮题库:第8章-第8讲--立体几何中的向量方法(二).docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高考数学(广东专用-理)一轮题库:第8章-第8讲--立体几何中的向量方法(二).docx

1、第8讲 立体几何中的向量方法(二) 一、选择题 1.两平行平面α,β分别经过坐标原点O和点A(2,1,1),且两平面的一个法向量n=(-1,0,1),则两平面间的距离是(  ) A. B. C. D.3 解析 两平面的一个单位法向量n0=,故两平面间的距离d=|·n0|=. 答案 B 2.已知向量m,n分别是直线l和平面α的方向向量、法向量,若cos〈m,n〉=-,则l与α所成的角为 (  ). A.30° B.60° C.120° D.150° 解析 

2、设l与α所成的角为θ,则sin θ=|cos〈m,n〉|=,∴θ=30°. 答案 A 3.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,E为CC1的中点,则异面直线BC1与AE所成角的余弦值为 (  ). A. B. C. D. 解析 建立坐标系如图, 则A(1,0,0),E(0,2,1),B(1,2,0),C1(0,2,2). =(-1,0,2),=(-1,2,1), cos〈,〉==. 所以异面直线BC1与AE所成角的余弦值为. 答案 B 4.已知直二面角α­l­β,点A∈α,AC⊥l,C为垂足,点B∈β,B

3、D⊥l,D为垂足,若AB=2,AC=BD=1,则CD=(  ). A.2 B. C. D.1 解析 如图,建立直角坐标系D­xyz,由已 知条件B(0,0,1),A(1,t,0)(t>0), 由AB=2解得t=. 答案 C 5.如图,在四周体ABCD中,AB=1,AD=2,BC=3,CD=2.∠ABC=∠DCB=,则二面角A-BC-D的大小为 (  ). A.    B.    C.    D. 解析 二面角A-BC-D的大小等于AB与CD所成角的大小.=++.而2=2+2+2-2

4、·||·cos 〈,〉,即12=1+4+9-2×2cos〈,〉,∴cos〈,〉=,∴AB与CD所成角为,即二面角A-BC-D的大小为.故选B. 答案 B 6.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为(  ) A. B. C.2 D. 解析 如图,以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z 轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1

5、0,2,2),C1(0,0,2),D(1,0,1) 设AD=a,则D点坐标为(1,0,a),=(1,0,a), =(0,2,2), 设平面B1CD的一个法向量为m=(x,y,z). 则⇒,令z=-1, 得m=(a,1,-1),又平面C1DC的一个法向量为n(0,1,0), 则由cos60°=,得=,即a=, 故AD=. 答案 A 二、填空题 7.若平面α的一个法向量为n=(4,1,1),直线l的一个方向向量为a=(-2,-3,3),则l与α所成角的正弦值为________. 解析 cos〈n,a〉===-. 又l与α所成角记为θ,即sin θ=|cos〈n,a〉|=

6、 答案 . 8.若向量a=(1,λ,2),b=(2,-1,2)且a与b的夹角的余弦值为,则λ=________. 解析 由已知得==, ∴8 =3(6-λ),解得λ=-2或λ=. 答案 -2或 9.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1,CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值为________. 解析 如图,建立直角坐标系D-xyz,设DA=1由已知条件A(1,0,0),E,F, =,=, 设平面AEF的法向量为n=(x,y,z), 面AEF与面ABC所成的二面角为θ, 由得 令y=1,z=-3,x=

7、-1,则n=(-1,1,-3) 平面ABC的法向量为m=(0,0,-1) cos θ=cos〈n,m〉=,tan θ=. 答案  10.在三棱锥O-ABC中,三条棱OA,OB,OC两两垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成角的正切值是________. 解析 如图所示建立空间直角坐标系,设OA=OB=OC=1,则A(1,0,0),B(0,1,0),C(0,0,1),M,故=(-1,1,0),=(-1,0,1),=. 设平面ABC的法向量为n=(x,y,z), 则由得 令x=1,得n=(1,1,1).故cos〈n,〉==, 所以OM与平面ABC所成角

8、的正弦值为,其正切值为. 答案  三、解答题 11.如图,四周体ABCD中,AB、BC、BD两两垂直,AB=BC=BD=4,E、F分别为棱BC、AD的中点. (1)求异面直线AB与EF所成角的余弦值; (2)求E到平面ACD的距离; (3)求EF与平面ACD所成角的正弦值. 解 如图,分别以直线BC、BD、BA为x、y、z轴建立空间直角坐标系,则各相关点的坐标为A(0,0,4)、C(4,0,0)、D(0,4,0),E(2,0,0)、F(0,2,2). (1)∵=(0,0,-4),=(-2,2,2), ∴|cos〈,〉|==, ∴异面直线AB与EF所成角的余弦值为. (2)

9、设平面ACD的一个法向量为n=(x,y,1), 则∵=(4,0,-4),=(-4,4,0), ∴ ∴x=y=1,∴n=(1,1,1,). ∵F∈平面ACD,=(-2,2,2), ∴E到平面ACD的距离为d===. (3)EF与平面ACD所成角的正弦值为|cos〈n,〉|== 12.如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6. (1)求证:BD⊥平面PAC; (2)求二面角P-BD-A的大小. (1)证明 如图,建立空间直角坐标系, 则A(0,0,0),B(2,0,0), C(2,

10、6,0),D(0,2,0),P(0,0,3), ∴=(0,0,3),=(2,6,0), =(-2,2,0). ∴·=0,·=0.∴BD⊥AP,BD⊥AC. 又∵PA∩AC=A,∴BD⊥面PAC. (2)解 设平面ABD的法向量为m=(0,0,1), 设平面PBD的法向量为n=(x,y,z), 则n·=0,n·=0.∵=(-2,0,3), ∴解得 令x=,则n=(,3,2),∴cos〈m,n〉==. ∴二面角P-BD-A的大小为60°. 13.如图,直三棱柱ABC-A1B1C1中,AC=BC=AA1,D是棱AA1的中点,DC1⊥BD. (1)证明:DC1⊥BC. (2)

11、求二面角A1-BD-C1的大小. (1)证明 由题设知,三棱柱的侧面为矩形.由于D为AA1的中点, 故DC=DC1. 又AC=AA1,可得DC+DC2=CC,所以DC1⊥DC. 而DC1⊥BD,DC∩BD=D,所以DC1⊥平面BCD. 由于BC⊂平面BCD,所以DC1⊥BC. (2)解 由(1)知BC⊥DC1,且BC⊥CC1,则BC⊥平面ACC1A1,所以CA,CB,CC1两两相互垂直.以C为坐标原点,的方向为x轴的正方向,||为单位长,建立如图所示的空间直角坐标系 C-xyz.由题意知A1(1,0,2),B(0,1,0),D(1,0,1),C1(0,0,2). 则=(0,0,-

12、1),=(1,-1,1),=(-1,0,1). 设n=(x,y,z)是平面A1B1BD的法向量,则 即可取n=(1,1,0). 同理,设m=(x,y,z)是平面C1BD的法向量,则 即可取m=(1,2,1). 从而cos〈n,m〉==. 故二面角A1-BD-C1的大小为30°. 14.如图,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点. (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求直线BF和平面BCE所成角的正弦值. 解 方法一: (1)证法一:取CE的中点G,连接FG、BG.

13、 ∵F为CD的中点,∴GF∥DE且GF=DE, ∵AB⊥平面ACD,DE⊥平面ACD, ∴AB∥DE,∴GF∥AB. 又AB=DE,∴GF=AB.又DE=2AB, ∴四边形GFAB为平行四边形,则AF∥BG. ∵AF⊄平面BCE,BG⊂平面BCE, ∴AF∥平面BCE. 证法二:取DE的中点M,连接AM、FM, ∵F为CD的中点,∴FM∥CE. ∵AB⊥平面ACD,DE⊥平面ACD,∴DE∥AB. 又AB=DE=ME, ∴四边形ABEM为平行四边形,则AM∥BE. ∵FM、AM⊄平面BCE,CE、BE⊂平面BCE, ∴FM∥平面BCE,AM∥平面BCE. 又FM∩A

14、M=M,∴平面AFM∥平面BCE. ∵AF⊂平面AFM, ∴AF∥平面BCE. (2)证明:∵△ACD为等边三角形,F为CD的中点, ∴AF⊥CD. ∵DE⊥平面ACD,AF⊂平面ACD,∴DE⊥AF. 又CD∩DE=D,故AF⊥平面CDE. ∵BG∥AF,∴BG⊥平面CDE. ∵BG⊂平面BCE, ∴平面BCE⊥平面CDE. (3)在平面CDE内,过F作FH⊥CE于H,连接BH, ∵平面BCE⊥平面CDE,∴FH⊥平面BCE. ∴∠FBH为BF和平面BCE所成的角. 设AD=DE=2AB=2a,则FH=CFsin45°=a, BF===2a, 在Rt△FHB

15、中,sin∠FBH==. ∴直线BF和平面BCE所成角的正弦值为. 方法二: 设AD=DE=2AB=2a,建立如图所示的坐标系A-xyz,则A(0,0,0),C(2a,0,0),B(0,0,a),D(a,a,0),E(a,a,2a). ∵F为CD的中点,∴F. (1)证明:=,=(a,a,a),=(2a,0,-a), ∵=(+),AF⊄平面BCE,∴AF∥平面BCE. (2)证明:∵=,=(-a,a,0),=(0,0,-2a), ∴·=0,·=0,∴⊥,⊥. ∴⊥平面CDE,又AF∥平面BCE, ∴平面BCE⊥平面CDE. (3)设平面BCE的法向量为n=(x,y,z),由n·=0,n·=0可得 x+y+z=0,2x-z=0,取n=(1,-,2). 又=,设BF和平面BCE所成的角为θ,则 sinθ===. ∴直线BF和平面BCE所成角的正弦值为.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服