1、非常好的定积分与微积分基本定理复习讲义精品文档定积分与微积分基本定理复习讲义备考方向要明了考 什 么怎 么 考1.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念2.了解微积分基本定理的含义.1.考查形式多为选择题或填空题2.考查简单定积分的求解3.考查曲边梯形面积的求解4.与几何概型相结合考查归纳知识整合1定积分(1)定积分的相关概念:在f(x)dx中,a,b分别叫做积分下限与积分上限,区间a,b叫做积分区间,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式(2)定积分的几何意义当函数f(x)在区间a,b上恒为正时,定积分f(x)dx的几何意义是由直线xa,xb(ab
2、),y0和曲线yf(x)所围成的曲边梯形的面积(左图中阴影部分)一般情况下,定积分f(x)dx的几何意义是介于x轴、曲线f(x)以及直线xa,xb之间的曲边梯形面积的代数和(右上图中阴影所示),其中在x轴上方的面积等于该区间上的积分值,在x轴下方的面积等于该区间上积分值的相反数(3)定积分的基本性质: kf(x)dxkf(x)dx.f1(x)f2(x)dxf1(x)dxf2(x)dx.f(x)dxf(x)dxf(x)dx.探究1.若积分变量为t,则f(x)dx与f(t)dt是否相等?提示:相等2一个函数的导数是唯一的,反过来导函数的原函数唯一吗?提示:一个函数的导数是唯一的,而导函数的原函数则
3、有无穷多个,这些原函数之间都相差一个常数,在利用微积分基本定理求定积分时,只要找到被积函数的一个原函数即可,并且一般使用不含常数的原函数,这样有利于计算3定积分f(x)g(x)dx(f(x)g(x)的几何意义是什么?提示:由直线xa,xb和曲线yf(x),yg(x)所围成的曲边梯形的面积2微积分基本定理:如果f(x)是区间a,b上的连续函数,并且F(x)f(x),那么f(x)dxF(b)F(a),这个结论叫做微积分基本定理,又叫做牛顿莱布尼兹公式 为了方便,常把F(b)F(a)记成F(x),即 f(x)dxF(x)F(b)F(a)课前预测:1.dx等于()A2ln 2B2ln 2 Cln 2
4、Dln 22(教材习题改编)一质点运动时速度和时间的关系为V(t)t2t2,质点作直线运动,则此物体在时间1,2内的位移为()A. B. C. D.3(教材习题改编)直线x0,x2,y0与曲线yx2所围成的曲边梯形的面积为_4(教材改编题)dx_.5由y,直线yx所围成的封闭图形的面积为_考点一 利用微积分基本定理求定积分例1利用微积分基本定理求下列定积分:(1)(x22x1)dx;(2)(sin xcos x)dx;(3)x(x1)dx;(4)dx;(5) sin2dx.求定积分的一般步骤:(1)把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数的积的和或差;(2)把定积分用定积分性
5、质变形为求被积函数为上述函数的定积分;(3)分别用求导公式找到一个相应的原函数;(4)利用牛顿莱布尼兹公式求出各个定积分的值;(5)计算原始定积分的值强化训练:1求下列定积分:(1)|x1|dx;(2) dx.考点二 利用定积分的几何意义求定积分例2dx_.变式:在本例中,改变积分上限,求dx的值 利用几何意义求定积分的方法(1)当被积函数较为复杂,定积分很难直接求出时,可考虑用定积分的几何意义求定积分(2)利用定积分的几何意义,可通过图形中面积的大小关系来比较定积分值的大小强化训练:2(2014福建模拟)已知函数f(x)(cos tsin t)dt(x0),则f(x)的最大值为_考点三:利用
6、定积分求平面图形的面积例3(2014山东高考)由曲线y,直线yx2及y轴所围成的图形的面积为()A. B4C. D6变式训练:若将“yx2”改为“yx2”,将“y轴”改为“x轴”,如何求解?利用定积分求曲边梯形面积的步骤(1)画出曲线的草图(2)借助图形,确定被积函数,求出交点坐标,确定积分的上、下限(3)将“曲边梯形”的面积表示成若干个定积分的和或差(4)计算定积分,写出答案强化训练:3 (2014郑州模拟)如图,曲线yx2和直线x0,x1,y所围成的图形(阴影部分)的面积为()A.B.C.D.考点四:定积分在物理中的应用例4列车以72 km/h的速度行驶,当制动时列车获得加速度a0.4 m
7、/s2,问列车应在进站前多长时间,以及离车站多远处开始制动?1变速直线运动问题如果做变速直线运动的物体的速度v关于时间t的函数是vv(t)(v(t)0),那么物体从时刻ta到tb所经过的路程为v(t)dt;如果做变速直线运动的物体的速度v关于时间t的函数是vv(t)(v(t)0),那么物体从时刻ta到tb所经过的路程为v(t)dt.2变力做功问题物体在变力F(x)的作用下,沿与力F(x)相同方向从xa到xb所做的功为F(x)dx.强化训练:4一物体在力F(x)(单位:N)的作用下沿与力F(x)相同的方向运动了4米,力F(x)做功为()A44 JB46 JC48 J D50 J1个定理微积分基本
8、定理由微积分基本定理可知求定积分的关键是求导函数的原函数,由此可知,求导与积分是互为逆运算3条性质定积分的性质(1)常数可提到积分号外;(2)和差的积分等于积分的和差;(3)积分可分段进行3个注意定积分的计算应注意的问题(1)若积分式子中有几个不同的参数,则必须分清谁是积分变量;(2)定积分式子中隐含的条件是积分上限不小于积分下限;(3)面积非负, 而定积分的结果可以为负. 易误警示利用定积分求平面图形的面积的易错点典例(2013上海高考)已知函数yf(x)的图象是折线段ABC,其中A(0,0),B,C(1,0)函数yxf(x)(0x1)的图象与x轴围成的图形的面积为_1本题易写错图形面积与定
9、积分间的关系而导致解题错误2本题易弄错积分上、下限而导致解题错误,实质是解析几何的相关知识和运算能力不够致错3解决利用定积分求平面图形的面积问题时,应处理好以下两个问题:(1)熟悉常见曲线,能够正确作出图形,求出曲线交点,必要时能正确分割图形;(2)准确确定被积函数和积分变量变式训练:1由曲线yx2,yx3围成的封闭图形面积为()A.B.C.D.2(2014山东高考)设a0.若曲线y与直线xa,y0所围成封闭图形的面积为a2,则a_. 定积分与微积分基本定理检测题一、选择题(本大题共6小题,每小题5分,共30分)1.dx()Aln xln2xB.1C. D.2(2012湖北高考)已知二次函数y
10、f(x)的图象如图所示,则它与x轴所围图形的面积为()A. B.C. D.3设函数f(x)ax2b(a0),若f(x)dx3f(x0),则x0等于()A1 B.C D24设f(x)则f(x)dx()A. B.C. D不存在5以初速度40 m/s竖直向上抛一物体,t秒时刻的速度v4010t2,则此物体达到最高时的高度为()A. m B. mC. m D. m6(2013青岛模拟)由直线x,x,y0与曲线ycos x所围成的封闭图形的面积为()A. B1C. D.二、填空题(本大题共3小题,每小题5分,共15分)7设asin xdx,则曲线yf(x)xaxax2在点(1,f(1)处的切线的斜率为_
11、8在等比数列an中,首项a1,a4(12x)dx,则该数列的前5项之和S5等于_9(2013孝感模拟)已知a,则当(cos xsin x)dx取最大值时,a_.三、解答题(本大题共3小题,每小题12分,共36分)10计算下列定积分:(1) sin2xdx; (2)2dx; (3)e2xdx.11如图所示,直线ykx分抛物线yxx2与x轴所围图形为面积相等的两部分,求k的值12如图,设点P从原点沿曲线yx2向点A(2,4)移动,直线OP与曲线yx2围成图形的面积为S1,直线OP与曲线yx2及直线x2围成图形的面积为S2,若S1S2,求点P的坐标 备选习题1一物体做变速直线运动,其vt曲线如图所示
12、,则该物体在 s6 s间的运动路程为_2计算下列定积分:(1) (3x22x1)dx; (2)dx.3求曲线y,y2x,yx所围成图形的面积4某技术监督局对一家颗粒输送仪生产厂进行产品质量检测时,得到了下面的资料:这家颗粒输送仪生产厂生产的颗粒输送仪,其运动规律属于变速直线运动,且速度v(单位:m/s)与时间t(单位:s)满足函数关系式v(t)某公司拟购买一台颗粒输送仪,要求1 min行驶的路程超过7 673 m,问这家颗粒输送仪生产厂生产的颗粒输送仪能否被列入拟挑选的对象之一? 定积分与微积分基本定理复习讲义答案前测:1.2ln 2例:(1).(2)2.(3).(4)e4e2ln 2.(5)
13、.变式:解:(1)|x1|故|x1|dx(1x)dx(x1)dx1.(2) dx|sin xcos x|dx (cos xsin x)dx (sin xcos x)dx(sin xcos x)(cos xsin x) 1(1)22.例:自主解答dx表示y与x0,x1及y0所围成的图形的面积由y得(x1)2y21(y0),又0x1,y与x0,x1及y0所围成的图形为个圆,其面积为.dx.互动:解:dx表示圆(x1)2y21在第一象限内部分的面积,即半圆的面积,所以dx.变式.1例.互动:.变式.例:自主解答a0.4 m/s2,v072 km/h20 m/s.设t s后的速度为v,则v200.4t
14、.令v0,即200.4 t0得t50 (s)设列车由开始制动到停止所走过的路程为s,则svdt(200.4t)dt(20t0.2t2)20500.2502500(m),即列车应在进站前50 s和进站前500 m处开始制动变式.46典例:解析由题意可得f(x)所以yxf(x)与x轴围成图形的面积为10x2dxError! Reference source not found.(10x10x2)dxx3Error! Reference source not found. 答案 变式5.检测题答案.42ln 2.10.解:(1) . (2)ln . (3) e.11.解:抛物线yxx2与x轴两交点的
15、横坐标为x10,x21,所以,抛物线与x轴所围图形的面积S(xx2)dx. 又由此可得,抛物线yxx2与ykx两交点的横坐标为x30,x41k,所以,(xx2kx)dx(1k)3.又知S,所以(1k)3,于是k1 1.12.解:设直线OP的方程为ykx,点P的坐标为(x,y),则(kxx2)dx(x2kx)dx,即,解得kx2x32k,解得k,即直线OP的方程为yx,所以点P的坐标为.备选题:1.解析:由题图可知,v(t)因此该物体在 s6 s间运动的路程为sv(t)dt2tdt2dtdtt22t|(m) 答案: m2.解:(1) (3x22x1)dx(x3x2x) 24.(2)dxxdxdxdxx2ln x(e21)(ln eln 1) e2.3. 解:由得交点A(1,1)由得交点B(3,1) 故所求面积Sdxdx.4.解:由变速直线运动的路程公式,可得st2dt(4t60)dt140dtt3(2t260t)140t7 133 (m)7 676(m)这家颗粒输送仪生产厂生产的颗粒输送仪不能被列入拟挑选的对象之一收集于网络,如有侵权请联系管理员删除
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100