ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:240KB ,
资源ID:3807303      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3807303.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(近世代数期末考试试卷及答案讲课讲稿.doc)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

近世代数期末考试试卷及答案讲课讲稿.doc

1、 近世代数期末考试试卷及答案 精品文档 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设G 有6个元素的循环群,a是生成元,则G的子集( )是子群。 A、 B、 C、 D、 2、下面的代数系统(G,*)中,( )不是群 A、G为整数集合,*为加法 B、G为偶数集合,*为加法 C、G为有理数集合,*为加法 D、G为有理数集合,*为乘法 3、在自然数集N上,下列哪种运算是

2、可结合的?( ) A、a*b=a-b  B、a*b=max{a,b} C、 a*b=a+2b D、a*b=|a-b| 4、设、、是三个置换,其中=(12)(23)(13),=(24)(14),=(1324),则=( ) A、 B、 C、 D、 5、任意一个具有2个或以上元的半群,它( )。 A、不可能是群  B、不一定是群  C、一定是群  D、 是交换群 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填均无分。 1、凯莱定理说:任一个子群都同一个----------同构。 2、一个有单位

3、元的无零因子-----称为整环。 3、已知群中的元素的阶等于50,则的阶等于------。 4、a的阶若是一个有限整数n,那么G与-------同构。 5、A={1.2.3} B={2.5.6} 那么A∩B=-----。 6、若映射既是单射又是满射,则称为-----------------。 7、叫做域的一个代数元,如果存在的-----使得。 8、是代数系统的元素,对任何均成立,则称为---------。 9、有限群的另一定义:一个有乘法的有限非空集合作成一个群,如果满足对于乘法封闭;结合律成立、---------。 10、一个环R对于加法来作成一个循环群,则P是------

4、 三、解答题(本大题共3小题,每小题10分,共30分) 1、设集合A={1,2,3}G是A上的置换群,H是G的子群,H={I,(1 2)},写出H的所有陪集。 2、设E是所有偶数做成的集合,“”是数的乘法,则“”是E中的运算,(E,)是一个代数系统,问(E,)是不是群,为什么? 3、a=493, b=391, 求(a,b), [a,b] 和p, q。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、若是群,则对于任意的a、b∈G,必有惟一的x∈G使得a*x=b。 2、设m是一个正整数,利用m定义整数集Z上的二元关系:a〜b当且仅当m︱

5、a–b。 近世代数模拟试题三 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、6阶有限群的任何子群一定不是( )。 A、2阶  B、3 阶 C、4 阶  D、 6 阶 2、设G是群,G有( )个元素,则不能肯定G是交换群。 A、4个 B、5个 C、6个 D、7个 3、有限布尔代数的元素的个数一定等于( )。 A、偶数  B、奇数 C、4的倍数

6、 D、2的正整数次幂 4、下列哪个偏序集构成有界格( ) A、(N,)  B、(Z,) C、({2,3,4,6,12},|(整除关系))  D、 (P(A),) 5、设S3={(1),(12),(13),(23),(123),(132)},那么,在S3中可以与(123)交换的所有元素有( ) A、(1),(123),(132) B、12),(13),(23) C、(1),(123) D、S3中的所有元素 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确

7、答案。错填、不填均无分。 1、群的单位元是--------的,每个元素的逆元素是--------的。 2、如果是与间的一一映射,是的一个元,则----------。 3、区间[1,2]上的运算的单位元是-------。 4、可换群G中|a|=6,|x|=8,则|ax|=——————————。 5、环Z8的零因子有 -----------------------。 6、一个子群H的右、左陪集的个数----------。 7、从同构的观点,每个群只能同构于他/它自己的---------。 8、无零因子环R中所有非零元的共同的加法阶数称为R的-----------。 9、设群中元素

8、的阶为,如果,那么与存在整除关系为--------。 三、解答题(本大题共3小题,每小题10分,共30分) 1、用2种颜色的珠子做成有5颗珠子项链,问可做出多少种不同的项链? 2、S1,S2是A的子环,则S1∩S2也是子环。S1+S2也是子环吗? 3、设有置换,。 1.求和; 2.确定置换和的奇偶性。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、一个除环R只有两个理想就是零理想和单位理想。 2、M为含幺半群,证明b=a-1的充分必要条件是aba=a和ab2a=e。

9、 近世代数模拟试题一 参考答案 一、单项选择题。 1、C;2、D;3、B;4、C;5、D; 二、填空题(本大题共10小题,每空3分,共30分)。 1、;2、单位元;3、交换环;4、整数环;5、变换群;6、同构;7、零、-a ;8、S=I或S=R ;9、域; 三、解答题(本大题共3小题,每小题10分,共30分) 1、解:把和写成不相杂轮换的乘积: 可知为奇置换,为偶置换。 和可以写成如下对换的乘积: 2、解:设A是任意方阵,令,,则B是对称矩阵,而C是反对称矩阵,且。若令有,这里

10、和分别为对称矩阵和反对称矩阵,则,而等式左边是对称矩阵,右边是反对称矩阵,于是两边必须都等于0,即:,,所以,表示法唯一。 3、答:(,)不是群,因为中有两个不同的单位元素0和m。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、对于G中任意元x,y,由于,所以(对每个x,从可得)。 2、证明在F里 有意义,作F的子集 显然是R的一个商域 证毕。 近世代数模拟试题二 参考答案 一、单项选择题(本大题共5小题,每小题3分,共15分)。 1、C;2、D;3、B;4、B;5、A; 二、填空题(本大题共10小题,每空3分,共30分

11、)。 1、变换群;2、交换环;3、25;4、模n乘余类加群;5、{2};6、一一映射;7、不都等于零的元;8、右单位元;9、消去律成立;10、交换环; 三、解答题(本大题共3小题,每小题10分,共30分) 1、解:H的3个右陪集为:{I,(1 2)},{(1 2 3 ),(1 3)},{(1 3 2 ),(2 3 )} H的3个左陪集为:{I,(1 2)} ,{(1 2 3 ),(2 3)},{(1 3 2 ),(1 3 )} 2、答:(E,)不是群,因为(E,)中无单位元。 3、解 方法一、辗转相除法。列以下算式: a=b+102 b=3×102+85 102=1×85

12、17 由此得到 (a,b)=17, [a,b]=a×b/17=11339。 然后回代:17=102-85=102-(b-3×102)=4×102-b=4×(a-b)-b=4a-5b. 所以 p=4, q=-5. 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、证明 设e是群的幺元。令x=a-1*b,则a*x=a*(a-1*b)=(a*a-1)*b=e*b=b。所以,x=a-1*b是a*x=b的解。 若x¢∈G也是a*x=b的解,则x¢=e*x¢=(a-1*a)*x¢=a-1*(a*x¢)=a-1*b=x。所以,x=a-1*b是a*x=b的

13、惟一解。 2、容易证明这样的关系是Z上的一个等价关系,把这样定义的等价类集合记为Zm,每个整数a所在的等价类记为[a]={x∈Z;m︱x–a}或者也可记为,称之为模m剩余类。若m︱a–b也记为a≡b(m)。 当m=2时,Z2仅含2个元:[0]与[1]。 近世代数模拟试题三 参考答案 一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、C;2、C;3、D;4、D;5、A; 二、填空题(本大题共10小题,每空3分,共30分)请在每小题的空格中填上正确答案。错填、不填

14、均无分。 1、唯一、唯一;2、;3、2;4、24;5、;6、相等;7、商群;8、特征;9、; 三、解答题(本大题共3小题,每小题10分,共30分) 1、解 在学群论前我们没有一般的方法,只能用枚举法。用笔在纸上画一下,用黑白两种珠子,分类进行计算:例如,全白只1种,四白一黑1种,三白二黑2种,…等等,可得总共8种。 2、证 由上题子环的充分必要条件,要证对任意a,b∈S1∩S2 有a-b, ab∈S1∩S2: 因为S1,S2是A的子环,故a-b, ab∈S1和a-b, ab∈S2 , 因而a-b, ab∈S1∩S2 ,所以S1∩S2是子环。 S1+S2不一定是子环。在矩阵环中很容易找到反例: 3、解: 1.,; 2.两个都是偶置换。 四、证明题(本大题共2小题,第1题10分,第2小题15分,共25分) 1、证明:假定是R的一个理想而不是零理想,那么a,由理想的定义,因而R的任意元 这就是说=R,证毕。 2、证 必要性:将b代入即可得。 充分性:利用结合律作以下运算: ab=ab(ab2a)=(aba)b2a=ab2a=e, ba=(ab2a)ba=ab2 (aba)=ab2a=e, 所以b=a-1。 收集于网络,如有侵权请联系管理员删除

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服