1、(建议用时:80分钟)1设an是公比大于1的等比数列,Sn为数列an的前n项和,已知S37,且a13,3a2,a34构成等差数列(1)求数列an的通项;(2)令bnln a3n1,n1,2,求数列bn的前n项和Tn.解(1)由已知得a22.设数列an的公比为q,由a22,可得a1,a32q,又S37,所以22q7,即2q25q20.解得q2或q,q1,q2,a11.故数列an的通项为an2n1.(2)由(1)得a3n123n,bnln 23n3nln 2.又bn1bn3ln 2,数列bn为等差数列Tnb1b2bnln 2.故Tnln 2.2(2021南昌模拟)已知等差数列an的前n项和为Sn,
2、公差d0,且S3S550,a1,a4,a13成等比数列(1)求数列an的通项公式;(2)设是首项为1,公比为3的等比数列,求数列bn的前n项和Tn.解(1)依题意得解得an2n1.(2)3n1,bnan3n1(2n1)3n1,Tn353732(2n1)3n1,3Tn33532733(2n1)3n1(2n1)3n,两式相减得,2Tn32323223n1(2n1)3n32(2n1)3n2n3n,Tnn3n.3已知函数f(x),数列an满足a11,an1f,nN,(1)求数列an的通项公式;(2)令Tna1a2a2a3a3a4a4a5a2na2n1,求Tn.解(1)an1fan,an是以为公差的等差
3、数列又a11,ann.(2)Tna1a2a2a3a3a4a4a5a2na2n1a2(a1a3)a4(a3a5)a2n(a2n1a2n1)(a2a4a2n)(2n23n)4(2022浙江卷)已知数列an和bn满足a1a2a3an()bn(nN)若an为等比数列,且a12,b36b2.(1)求an与bn;(2)设cn(nN)记数列cn的前n项和为Sn.求Sn;求正整数k,使得对任意nN均有SkSn.解(1)由题意a1a2a3an()bn,b3b26,知a3()b3b28.又由a12,得公比q2(q2舍去),所以数列an的通项为an2n(nN)所以,a1a2a3an2()n(n1)故数列bn的通项为
4、bnn(n1)(nN)(2)由(1)知cn(nN),所以Sn(nN)由于c10,c20,c30,c40;当n5时,cn,而0,得1,所以,当n5时,cn0.综上,对任意nN恒有S4Sn,故k4.5已知等比数列an满足2a1a33a2,且a32是a2,a4的等差中项(1)求数列an的通项公式;(2)若bnanlog2,Snb1b2bn,求使Sn2n1470成立的n的最小值解(1)设等比数列an的公比为q,依题意,有即由得q23q20,解得q1或q2.当q1时,不合题意,舍去;当q2时,代入得a12,所以an22n12n.故所求数列an的通项公式an2n(nN)(2)bnanlog22nlog22
5、nn.所以Sn212222332nn(222232n)(123n)2n12nn2.由于Sn2n1470,所以2n12nn22n1470,解得n9或n10.由于nN,故使Sn2n1470成立的正整数n的最小值为10.6(2022合肥一模)已知数列an的首项a14,前n项和为Sn,且Sn13Sn2n40(nN)(1)求数列an的通项公式;(2)设函数f(x)anxan1x2an2x3a1xn,f(x)是函数f(x)的导函数,令bnf(1),求数列bn的通项公式,并争辩其单调性解(1)由Sn13Sn2n40(nN),得Sn3Sn12n240(n2),两式相减得an13an20,可得an113(an1)(n2),又由S23S1240及a14,得a214,所以a213(a11),即an1是一个首项为5,公比为3的等比数列,所以an53n11(nN)(2)由于f(x)an2an1xna1xn1,所以f(1)an2an1na1(53n11)2(53n21)n(5301)5(3n123n233n3n30),令S3n123n233n3n30,则3S3n23n133n2n31,两式作差得S,所以f(1),即bn.而bn1,所以bn1bnn0,所以数列bn是单调递增数列.