ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:48.98KB ,
资源ID:3806751      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3806751.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届-数学一轮(理科)-北师大版-课时作业-热点训练-探究课4-Word版含答案.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届-数学一轮(理科)-北师大版-课时作业-热点训练-探究课4-Word版含答案.docx

1、(建议用时:80分钟)1设an是公比大于1的等比数列,Sn为数列an的前n项和,已知S37,且a13,3a2,a34构成等差数列(1)求数列an的通项;(2)令bnln a3n1,n1,2,求数列bn的前n项和Tn.解(1)由已知得a22.设数列an的公比为q,由a22,可得a1,a32q,又S37,所以22q7,即2q25q20.解得q2或q,q1,q2,a11.故数列an的通项为an2n1.(2)由(1)得a3n123n,bnln 23n3nln 2.又bn1bn3ln 2,数列bn为等差数列Tnb1b2bnln 2.故Tnln 2.2(2021南昌模拟)已知等差数列an的前n项和为Sn,

2、公差d0,且S3S550,a1,a4,a13成等比数列(1)求数列an的通项公式;(2)设是首项为1,公比为3的等比数列,求数列bn的前n项和Tn.解(1)依题意得解得an2n1.(2)3n1,bnan3n1(2n1)3n1,Tn353732(2n1)3n1,3Tn33532733(2n1)3n1(2n1)3n,两式相减得,2Tn32323223n1(2n1)3n32(2n1)3n2n3n,Tnn3n.3已知函数f(x),数列an满足a11,an1f,nN,(1)求数列an的通项公式;(2)令Tna1a2a2a3a3a4a4a5a2na2n1,求Tn.解(1)an1fan,an是以为公差的等差

3、数列又a11,ann.(2)Tna1a2a2a3a3a4a4a5a2na2n1a2(a1a3)a4(a3a5)a2n(a2n1a2n1)(a2a4a2n)(2n23n)4(2022浙江卷)已知数列an和bn满足a1a2a3an()bn(nN)若an为等比数列,且a12,b36b2.(1)求an与bn;(2)设cn(nN)记数列cn的前n项和为Sn.求Sn;求正整数k,使得对任意nN均有SkSn.解(1)由题意a1a2a3an()bn,b3b26,知a3()b3b28.又由a12,得公比q2(q2舍去),所以数列an的通项为an2n(nN)所以,a1a2a3an2()n(n1)故数列bn的通项为

4、bnn(n1)(nN)(2)由(1)知cn(nN),所以Sn(nN)由于c10,c20,c30,c40;当n5时,cn,而0,得1,所以,当n5时,cn0.综上,对任意nN恒有S4Sn,故k4.5已知等比数列an满足2a1a33a2,且a32是a2,a4的等差中项(1)求数列an的通项公式;(2)若bnanlog2,Snb1b2bn,求使Sn2n1470成立的n的最小值解(1)设等比数列an的公比为q,依题意,有即由得q23q20,解得q1或q2.当q1时,不合题意,舍去;当q2时,代入得a12,所以an22n12n.故所求数列an的通项公式an2n(nN)(2)bnanlog22nlog22

5、nn.所以Sn212222332nn(222232n)(123n)2n12nn2.由于Sn2n1470,所以2n12nn22n1470,解得n9或n10.由于nN,故使Sn2n1470成立的正整数n的最小值为10.6(2022合肥一模)已知数列an的首项a14,前n项和为Sn,且Sn13Sn2n40(nN)(1)求数列an的通项公式;(2)设函数f(x)anxan1x2an2x3a1xn,f(x)是函数f(x)的导函数,令bnf(1),求数列bn的通项公式,并争辩其单调性解(1)由Sn13Sn2n40(nN),得Sn3Sn12n240(n2),两式相减得an13an20,可得an113(an1)(n2),又由S23S1240及a14,得a214,所以a213(a11),即an1是一个首项为5,公比为3的等比数列,所以an53n11(nN)(2)由于f(x)an2an1xna1xn1,所以f(1)an2an1na1(53n11)2(53n21)n(5301)5(3n123n233n3n30),令S3n123n233n3n30,则3S3n23n133n2n31,两式作差得S,所以f(1),即bn.而bn1,所以bn1bnn0,所以数列bn是单调递增数列.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服