1、第4讲数列求和基础巩固题组(建议用时:40分钟)一、填空题1等差数列an的通项公式为an2n1,其前n项和为Sn,则数列的前10项的和为_解析由于n2,所以的前10项和为10375.答案752已知函数f(n)且anf(n)f(n1),则a1a2a3a100等于_解析由题意,得a1a2a3a1001222223232424252992100210021012(12)(32)(99100)(101100)(1299100)(23100101)5010150103100.答案1003数列a12,ak2k,a1020共有十项,且其和为240,则a1aka10的值为_解析a1aka10240(22k20
2、)240240110130.答案1304在等比数列an中,若a1,a44,则公比q_;|a1|a2|an|_.解析设等比数列an的公比为q,则a4a1q3,代入数据解得q38,所以q2;等比数列|an|的公比为|q|2,则|an|2n1,所以|a1|a2|a3|an|(12222n1)(2n1)2n1.答案22n15(2021泰州质检)已知数列an满足a11,an1an2n(nN*),则S2 016_.解析a11,a22,又2.2.a1,a3,a5,成等比数列;a2,a4,a6,成等比数列,S2 016a1a2a3a4a5a6a2 015a2 016(a1a3a5a2 015)(a2a4a6a
3、2 016)321 0083.答案321 00836已知数列an:,若bn,那么数列bn的前n项和Sn为_解析an,bn4,Sn44.答案7(2021扬州测试)在数列an中,a11,an1(1)n(an1),记Sn为an的前n项和,则S2 013_.解析由a11,an1(1)n(an1)可得a11,a22,a31,a40,该数列是周期为4的数列,所以S2 013503(a1a2a3a4)a2 013503(2)11 005.答案1 0058(2022武汉模拟)等比数列an的前n项和Sn2n1,则aaa_.解析当n1时,a1S11;当n2时,anSnSn12n1(2n11)2n1,又a11适合上
4、式an2n1,a4n1.数列a是以a1为首项,以4为公比的等比数列aaa(4n1)答案(4n1)二、解答题9(2022济南模拟)设等差数列an的前n项和为Sn,且S32S24,a536.(1)求an,Sn;(2)设bnSn1(nN*),Tn,求Tn.解(1)由于S32S24,所以a1d4,又由于a536,所以a14d36.解得d8,a14,所以an48(n1)8n4,Sn4n2.(2)bn4n21(2n1)(2n1),所以.Tn.10(2021石家庄模拟)已知an 是各项均为正数的等比数列,且a1a22,a3a432.(1)求数列an的通项公式;(2)设数列bn的前n项和为Snn2(nN*),
5、求数列anbn的前n项和解(1)设等比数列an的公比为q,由已知得又a10,q0,解得an2n1.(2)由Snn2得Sn1(n1)2(n2),当n2时,bnSnSn12n1,当n1时,b11符合上式,bn2n1(nN*),anbn(2n1)2n1.Tn1321522(2n1)2n1,2Tn12322523(2n3)2n1(2n1)2n,两式相减得Tn12(2222n1)(2n1)2n(2n3)2n3,Tn(2n3)2n3.力量提升题组(建议用时:25分钟)1(2021南京模拟)数列an满足anan1(nN*),且a11,Sn是数列an的前n项和,则S21_.解析依题意得anan1an1an2,
6、则an2an,即数列an中的奇数项、偶数项分别相等,则a21a11,S21(a1a2)(a3a4)(a19a20)a2110(a1a2)a211016,答案62(2021长沙模拟)已知函数f(n)n2cos(n),且anf(n)f(n1),则a1a2a3a100_.解析若n为偶数,则anf(n)f(n1)n2(n1)2(2n1),为首项为a25,公差为4的等差数列;若n为奇数,则anf(n)f(n1)n2(n1)22n1,为首项为a13,公差为4的等差数列所以a1a2a3a100(a1a3a99)(a2a4a100)503450(5)4100.答案1003设f(x),利用倒序相加法,可求得ff
7、f的值为_解析当x1x21时,f(x1)f(x2)1.设Sfff,倒序相加有2Sff10,即S5.答案54在数列an中,a15,a22,记A(n)a1a2an,B(n)a2a3an1,C(n)a3a4an2(nN*),若对于任意nN*,A(n),B(n),C(n)成等差数列(1)求数列an的通项公式;(2)求数列|an|的前n项和解(1)依据题意A(n),B(n),C(n)成等差数列,A(n)C(n)2B(n),整理得an2an1a2a1253,数列an是首项为5,公差为3的等差数列,an53(n1)3n8.(2)|an|记数列|an|的前n项和为Sn.当n2时,Snn;当n3时,Sn7n14,综上,Sn