1、(建议用时:40分钟)一、选择题1设Sn是等差数列an的前n项和,若S735,则a4等于()A8B7 C6D5解析由题意,35,所以a45.答案D2已知等比数列an的前三项依次为a1,a1,a4,则an ()A4nB4n1C4nD4n1解析由题意得(a1)2(a1)(a4),解得a5,故a14,a26,所以an4n14n1.答案B3已知数列an的前n项和Snn22n2,则数列an的通项公式为()Aan2n3Ban2n3CanDan解析当n1时,a1S11;当n2时,anSnSn12n3.由于当n1时,a1的值不适合n2的解析式,故选C.答案C4等差数列an的前n项和为Sn,且a3a813,S7
2、35,则a8()A8B9 C10D11解析设ana1(n1)d,依题意解得所以a89.答案B5在等比数列an中,若a4,a8是方程x23x20的两根,则a6的值是 ()AB C.D2解析依题意得因此a40,a80,a6.答案C6已知等比数列an的公比为正数,且a3a92a,a22,则a1()A.B C.D2解析由于等比数列an的公比为正数,且a3a92a,a22,所以由等比数列的性质得a2a,a6a5,公比q,a1.答案C7设Sn是公差不为0的等差数列an的前n项和,若a12a83a4,则()A.B C.D解析由已知得a12a114d3a19d,a1d,又,将a1d代入化简得.答案A8设数列a
3、n是由正数组成的等比数列,Sn为其前n项和,已知a2a41,S37,则S5()A.B C.D解析设此数列的公比为q(q0),由已知a2a41,得a1,所以a31.由S37,知a37,即6q2q10,解得q,进而a14,所以S5.答案B9设等差数列an的前n项和为Sn,且a10,a3a100,a6a70,则满足Sn0的最大自然数n的值为()A6B7 C12D13解析a10,a6a70,a60,a70,等差数列的公差小于零,又a3a10a1a120,a1a132a70,S120,S130,满足Sn0的最大自然数n的值为12.答案C10已知各项不为0的等差数列an满足a42a3a80,数列bn是等比
4、数列,且b7a7,则b2b8b11等于()A1B2 C4D8解析设等差数列的公差为d,由a42a3a80,得a73d2a3(a7d)0,从而有a72或a70(a7b7,而bn是等比数列,故舍去),设bn的公比为q,则b7a72,b2b8b11b7qb7q4(b7)3238.答案D11已知正数a,b的等比中项是2,且mb,na,则mn的最小值是()A3B4 C5D6解析由已知正数a,b的等比中项是2,可得ab4,又mb,na,mn(ab)()25,当且仅当ab2时取“”,故mn的最小值为5.答案C12已知函数f(x)(13m)x10(m为常数),若数列an满足anf(n)(nN*),且a12,则
5、数列an前100项的和为()A39 400B39 400 C78 800D78 800解析a1f(1)(13m)102,m3,anf(n)8n10,S1008(12100)1010081010039 400.答案B二、填空题13等差数列an中,若a1a22,a5a64,则a9a10_.解析依据等差数列的性质,a5a1a9a54d,a6a2a10a64d,(a5a6)(a1a2)8d,而a1a22,a5a64,8d2,a9a10a5a68d426.答案614设等比数列an的公比q2,前n项的和为Sn,则的值为_解析S4,a3a1q2,.答案15已知数列an满足an,则数列的前n项和为_解析an,4,所求的前n项和为44.答案16整数数列an满足an2an1an(nN*),若此数列的前800项的和是2 013,前813项的和是2 000,则其前2 014项的和为_解析a3a2a1,a4a3a2,a5a4a3,a6a5a4,a7a6a5,a1a7,a2a8,a3a9,a4a10,a5a11,an是以6为周期的数列,且有a1a2a3a4a5a60,S800a1a22 013,S813a1a2a32 000,a313,a21 000,S2 014a1a2a3a4a2a31 000(13)987.答案987