1、第三节等比数列及其前n项和全盘巩固1设Sn是等比数列an的前n项和,a3,S3,则公比q()A. B C1或 D1或解析:选C当q1时,a1a2a3,S3a1a2a3,符合题意;当q1时,由题意得解得q.故q1或q.2各项都为正数的等比数列an中,首项a13,前三项和为21,则a3a4a5()A33 B72 C84 D189解析:选Ca1a2a321,a1a1qa1q221,33q3q221,即1qq27,解得q2或q3.an0,q2,a3a4a521q221484.3已知等比数列an满足an0(nN*),且a5a2n522n(n3),则当n1时,log2a1log2a3log2a5log2a
2、2n1等于()A(n1)2 Bn2 Cn(2n1) D(n1)2解析:选B由等比数列的性质可知a5a2n5a,又a5a2n522n,所以an2n.又log2a2n1log222n12n1,所以log2a1log2a3log2a5log2a2n1135(2n1)n2.4已知数列an满足a15,anan12n,则()A2 B4 C5 D.解析:选B依题意得2,即2,故数列a1,a3,a5,a7,是一个以5为首项、2为公比的等比数列,因此4.5数列an中,已知对任意nN*,a1a2a3an3n1,则aaaa()A(3n1)2 B.(9n1) C9n1 D.(3n1)解析:选Ba1a2a3an3n1,
3、a1a2a3an13n11.由,得an3n3n123n1.当n2时,an3n3n123n1,又n1时,a12适合上式,an23n1,故数列a是首项为4,公比为9的等比数列因此aaa(9n1)6已知an为等比数列,下面结论中正确的是()Aa1a32a2Baa2aC若a1a3,则a1a2D若a3a1,则a4a2解析:选B设an的首项为a1,公比为q,则a2a1q,a3a1q2.a1a3a1(1q2),又1q22q,当a10时,a1(1q2)2a1q,即a1a32a2;当a10,aa2a,故B正确;若a1a3,则q21.q1.当q1时,a1a2;当q1时,a1a2,故C不正确;D项中,若q0,则a3
4、qa1q,即a4a2;若q0,则a3qa1q,此时a4a1a2an的最大正整数n的值为_解析:设等比数列的首项为a1,公比为q0,由得a1,q2.所以an2n6.a1a2an2n525,a1a2an2.由a1a2ana1a2an,得2n5252,由2n52,得n213n100,解得na1a2an,n13时不满足a1a2ana1a2an,故n的最大值为12.答案:1210数列an中,Sn1kan(k0,k1)(1)证明:数列an为等比数列;(2)求通项an;(3)当k1时,求和aaa.解:(1)证明:Sn1kan,Sn11kan1,得SnSn1kankan1(n2),(k1)ankan1,为常数
5、,n2.an是公比为的等比数列(2)S1a11ka1,a1.ann1.(3)an中a1,q,a是首项为2,公比为2的等比数列当k1时,等比数列a的首项为,公比为,aaa.11已知函数f(x)的图象过原点,且关于点(1,2)成中心对称(1)求函数f(x)的解析式;(2)若数列an满足a12,an1f(an),证明数列为等比数列,并求出数列an的通项公式解:(1)f(0)0,c0.f(x)的图象关于点(1,2)成中心对称,f(x)f(2x)4,解得b2.f(x).(2)an1f(an),当n2时,2.又20,数列是首项为2,公比为2的等比数列,2n,an.12已知数列an满足a11,an12an1
6、(nN*)(1)求证:数列an1是等比数列,并写出数列an的通项公式;(2)若数列bn满足4b114b214b314bn1(an1)n,求数列bn的前n项和Sn.解:(1)证明:an12an1,an112(an1),又a11,a1120,an10,2,数列an1是首项为2,公比为2的等比数列an12n,可得an2n1.(2)4b114b214b314bn1(an1)n,4b1b2b3bnn2n2,2(b1b2b3bn)2nn2,即2(b1b2b3bn)n22n,Snb1b2b3bnn2n.冲击名校1设f(x)是定义在R上恒不为零的函数,且对任意的实数x,yR,都有f(x)f(y)f(xy),若
7、a1,anf(n)(nN*),则数列an的前n项和Sn的取值范围是_解析:由已知可得a1f(1),a2f(2)f(1)22,a3f(3)f(2)f(1)f(1)33,anf(n)f(1)nn,所以Sn23n1n.nN*,Sn1,且nN*)an1an3(SnSn1)3an,an14an(n1,nN*),a23S113a113t1,当t1时,a24a1,数列an是等比数列(2)在(1)的结论下,an14an,an14n,bnlog4an1n,cnanbn4n1n,Tnc1c2cn(401)(412)(4n1n)(14424n1)(123n).高频滚动1已知等差数列an的前n项和为Sn,S440,S
8、n210, Sn4130,则n()A12 B14 C16 D18解析:选BSnSn4anan1an2an380,S4a1a2a3a440,所以4(a1an)120,a1an30,由Sn210,得n14.2已知数列an满足a11,且an2an12n(n2,nN*)(1)求证:数列是等差数列,并求出数列an的通项公式;(2)求数列an的前n项和Sn.解:(1)证明:由于an2an12n,所以1,即1,所以数列是等差数列,且公差d1,其首项,所以(n1)1n,解得an2n(2n1)2n1.(2)Sn120321522(2n1)2n1,2Sn121322523(2n3)2n1(2n1)2n,得Sn12022122222n1(2n1)2n1(2n1)2n(32n)2n3.所以Sn(2n3)2n3.