ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:67.22KB ,
资源ID:3802844      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3802844.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2021高考数学(文)一轮知能检测:第5章-第3节-等比数列及其前n项和.docx)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2021高考数学(文)一轮知能检测:第5章-第3节-等比数列及其前n项和.docx

1、第三节等比数列及其前n项和全盘巩固1设Sn是等比数列an的前n项和,a3,S3,则公比q()A. B C1或 D1或解析:选C当q1时,a1a2a3,S3a1a2a3,符合题意;当q1时,由题意得解得q.故q1或q.2各项都为正数的等比数列an中,首项a13,前三项和为21,则a3a4a5()A33 B72 C84 D189解析:选Ca1a2a321,a1a1qa1q221,33q3q221,即1qq27,解得q2或q3.an0,q2,a3a4a521q221484.3已知等比数列an满足an0(nN*),且a5a2n522n(n3),则当n1时,log2a1log2a3log2a5log2a

2、2n1等于()A(n1)2 Bn2 Cn(2n1) D(n1)2解析:选B由等比数列的性质可知a5a2n5a,又a5a2n522n,所以an2n.又log2a2n1log222n12n1,所以log2a1log2a3log2a5log2a2n1135(2n1)n2.4已知数列an满足a15,anan12n,则()A2 B4 C5 D.解析:选B依题意得2,即2,故数列a1,a3,a5,a7,是一个以5为首项、2为公比的等比数列,因此4.5数列an中,已知对任意nN*,a1a2a3an3n1,则aaaa()A(3n1)2 B.(9n1) C9n1 D.(3n1)解析:选Ba1a2a3an3n1,

3、a1a2a3an13n11.由,得an3n3n123n1.当n2时,an3n3n123n1,又n1时,a12适合上式,an23n1,故数列a是首项为4,公比为9的等比数列因此aaa(9n1)6已知an为等比数列,下面结论中正确的是()Aa1a32a2Baa2aC若a1a3,则a1a2D若a3a1,则a4a2解析:选B设an的首项为a1,公比为q,则a2a1q,a3a1q2.a1a3a1(1q2),又1q22q,当a10时,a1(1q2)2a1q,即a1a32a2;当a10,aa2a,故B正确;若a1a3,则q21.q1.当q1时,a1a2;当q1时,a1a2,故C不正确;D项中,若q0,则a3

4、qa1q,即a4a2;若q0,则a3qa1q,此时a4a1a2an的最大正整数n的值为_解析:设等比数列的首项为a1,公比为q0,由得a1,q2.所以an2n6.a1a2an2n525,a1a2an2.由a1a2ana1a2an,得2n5252,由2n52,得n213n100,解得na1a2an,n13时不满足a1a2ana1a2an,故n的最大值为12.答案:1210数列an中,Sn1kan(k0,k1)(1)证明:数列an为等比数列;(2)求通项an;(3)当k1时,求和aaa.解:(1)证明:Sn1kan,Sn11kan1,得SnSn1kankan1(n2),(k1)ankan1,为常数

5、,n2.an是公比为的等比数列(2)S1a11ka1,a1.ann1.(3)an中a1,q,a是首项为2,公比为2的等比数列当k1时,等比数列a的首项为,公比为,aaa.11已知函数f(x)的图象过原点,且关于点(1,2)成中心对称(1)求函数f(x)的解析式;(2)若数列an满足a12,an1f(an),证明数列为等比数列,并求出数列an的通项公式解:(1)f(0)0,c0.f(x)的图象关于点(1,2)成中心对称,f(x)f(2x)4,解得b2.f(x).(2)an1f(an),当n2时,2.又20,数列是首项为2,公比为2的等比数列,2n,an.12已知数列an满足a11,an12an1

6、(nN*)(1)求证:数列an1是等比数列,并写出数列an的通项公式;(2)若数列bn满足4b114b214b314bn1(an1)n,求数列bn的前n项和Sn.解:(1)证明:an12an1,an112(an1),又a11,a1120,an10,2,数列an1是首项为2,公比为2的等比数列an12n,可得an2n1.(2)4b114b214b314bn1(an1)n,4b1b2b3bnn2n2,2(b1b2b3bn)2nn2,即2(b1b2b3bn)n22n,Snb1b2b3bnn2n.冲击名校1设f(x)是定义在R上恒不为零的函数,且对任意的实数x,yR,都有f(x)f(y)f(xy),若

7、a1,anf(n)(nN*),则数列an的前n项和Sn的取值范围是_解析:由已知可得a1f(1),a2f(2)f(1)22,a3f(3)f(2)f(1)f(1)33,anf(n)f(1)nn,所以Sn23n1n.nN*,Sn1,且nN*)an1an3(SnSn1)3an,an14an(n1,nN*),a23S113a113t1,当t1时,a24a1,数列an是等比数列(2)在(1)的结论下,an14an,an14n,bnlog4an1n,cnanbn4n1n,Tnc1c2cn(401)(412)(4n1n)(14424n1)(123n).高频滚动1已知等差数列an的前n项和为Sn,S440,S

8、n210, Sn4130,则n()A12 B14 C16 D18解析:选BSnSn4anan1an2an380,S4a1a2a3a440,所以4(a1an)120,a1an30,由Sn210,得n14.2已知数列an满足a11,且an2an12n(n2,nN*)(1)求证:数列是等差数列,并求出数列an的通项公式;(2)求数列an的前n项和Sn.解:(1)证明:由于an2an12n,所以1,即1,所以数列是等差数列,且公差d1,其首项,所以(n1)1n,解得an2n(2n1)2n1.(2)Sn120321522(2n1)2n1,2Sn121322523(2n3)2n1(2n1)2n,得Sn12022122222n1(2n1)2n1(2n1)2n(32n)2n3.所以Sn(2n3)2n3.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服