ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:124.04KB ,
资源ID:3800716      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3800716.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【精***】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【精***】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届-数学一轮(理科)-苏教版-江苏专用-课时作业-第八章-立体几何-1-.docx)为本站上传会员【精***】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届-数学一轮(理科)-苏教版-江苏专用-课时作业-第八章-立体几何-1-.docx

1、第1讲空间几何体及其表面积与体积基础巩固题组(建议用时:40分钟)一、填空题1(2021无锡模拟)若正三棱锥的底面边长为,侧棱长为1,则此三棱锥的体积为_解析该正三棱锥的底面积为()2,高为,所以该正三棱锥的体积为.答案2(2021宿迁模拟)用半径为2 cm的半圆形纸片卷成一个圆锥筒,则这个圆锥筒的高为_cm.解析用半径为2 cm的半圆形纸片卷成一个圆锥筒,该圆锥的母线长为2,底面圆的周长为2,所以底面圆的半径为1,则这个圆锥筒的高为(cm)答案3. (2022福州模拟)如图所示,已知三棱柱ABCA1B1C1的全部棱长均为1,且AA1底面ABC,则三棱锥B1ABC1的体积为_解析三棱锥B1AB

2、C1的体积等于三棱锥AB1BC1的体积,三棱锥AB1BC1的高为,底面积为,故其体积为.答案4(2021盐城模拟)若一个圆锥的侧面开放图是面积为4的半圆面,则该圆锥的体积为_解析由圆锥的侧面开放图是面积为4的半圆面,得该半圆的半径是2,即为圆锥的母线长半圆周长即为圆锥底面圆的周长,设圆锥底面圆半径为r,则22r,解得r,所以圆锥的高是h,体积是Vr2h.答案5(2021苏、锡、常、镇四市调研)已知ABC为等腰直角三角形,斜边BC上的中线AD2,将ABC沿AD折成60的二面角,连接BC,则三棱锥CABD的体积为_解析由题意可得CDB60,DCDB,所以DCB是边长为2的等边三角形,且AD平面DC

3、B,所以三棱锥CABD的体积为SBCDAD22sin 602.答案6(2021南京模拟)已知圆锥的侧面开放图是一个半径为3 cm,圆心角为的扇形,则此圆锥的高为_cm.解析设圆锥的底面半径为r,则2r3,所以r1,所以高为2.答案27(2022山东卷)一个六棱锥的体积为2,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为_解析设六棱锥的高为h,斜高为h0.由于该六棱锥的底面是边长为2的正六边形,所以底面面积为22sin 6066,则6h2,得h1,所以h02,所以该六棱锥的侧面积为22612.答案128(2021泰州检测)如图,在正三棱柱ABCA1B1C1中,D为棱AA1的中点若

4、AA14,AB2,则四棱锥BACC1D的体积为_解析由于四棱锥BACC1D的底面ACC1D的面积为(24)26,高为2,所以体积为62.答案2二、解答题9(2022苏州检测)一个正三棱台的上、下底面边长分别是3 cm和6 cm,高是 cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积解(1) 设O1、O分别为正三棱台ABCA1B1C1的上、下底面正三角形的中心,如图所示,则O1O,过O1作O1D1B1C1,ODBC,则D1D为三棱台的斜高;过D1作D1EAD于E,则D1EO1O,因O1D13,OD6,则DEODO1D1.在RtD1DE中,D1D(cm)故三棱台的斜高为cm.(2)设c,

5、c分别为上、下底的周长,h为斜高,S侧(cc)h(3336)(cm2),S表S侧S上S下3262(cm2)故三棱台的侧面积为cm2,表面积为cm2.10如图1,在直角梯形ABCD中,ADC90,CDAB,AB4,ADCD2,将ADC沿AC折起,使平面ADC平面ABC,得到几何体DABC,如图2所示(1)求证:BC平面ACD;(2)求几何体DABC的体积(1)证明在题图中,可得ACBC2,从而AC2BC2AB2,故ACBC,又平面ADC平面ABC,平面ADC平面ABCAC,BC平面ABC,BC平面ACD.(2)解由(1)可知,BC为三棱锥BACD的高,BC2,SACD2,VBACDSACDBC2

6、2,由等体积性可知,几何体DABC的体积为.力量提升题组(建议用时:25分钟)1(2022江苏卷)设甲、乙两个圆柱的底面分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且,则的值是_解析设甲、乙两个圆柱的底面和高分别为r1、h1,r2、h2,则2r1h12r2h2,又,所以,则.答案2已知球的直径SC4,A,B是该球球面上的两点,AB,ASCBSC30,则棱锥SABC的体积为_解析由题意知,如图所示,在棱锥SABC中,SAC,SBC都是有一个角为30的直角三角形,其中AB,SC4,所以SASB2,ACBC2,作BDSC于D点,连接AD,易证SC平面ABD,因此V()24.答案3(2

7、022云南统一检测)已知球O的体积等于,假如长方体的八个顶点都在球O的球面上,那么这个长方体的表面积的最大值等于_解析由球O的体积为R3,得球O的半径R.设长方体的长、宽、高分别为x,y,z,则x2y2z2(2R)225,所以该长方体的表面积2xy2xz2yz2(x2y2z2)50,当且仅当xyz时取等号,所以表面积的最大值为50.答案504. 如图,四边形ABCD为正方形,QA平面ABCD,PDQA,QAABPD.(1)证明:PQ平面DCQ;(2)求棱锥QABCD的体积与棱锥PDCQ的体积的比值(1)证明由条件知四边形PDAQ为直角梯形由于QA平面ABCD,所以平面PDAQ平面ABCD,交线为AD.又四边形ABCD为正方形,DCAD,所以DC平面PDAQ,可得PQDC.在直角梯形PDAQ中可得DQPQPD,则PQQD.又DQDCD,所以PQ平面DCQ.(2)解设ABa.由题设知AQ为棱锥QABCD的高,所以棱锥QABCD的体积V1a3.由(1)知PQ为棱锥PDCQ的高,而PQa,DCQ的面积为a2,所以棱锥PDCQ的体积V2a3.故棱锥QABCD的体积与棱锥PDCQ的体积的比值为1.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服