ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:110.95KB ,
资源ID:3799199      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3799199.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(2022届-数学一轮(文科)-浙江专用-课时作业-第八章-解析几何-8-.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

2022届-数学一轮(文科)-浙江专用-课时作业-第八章-解析几何-8-.docx

1、第8讲曲线与方程基础巩固题组(建议用时:40分钟)一、选择题1(2021舟山质检)已知命题“曲线C上的点的坐标是方程f(x,y)0的解”是正确的,则下列命题中正确的是()A满足方程f(x,y)0的点都在曲线C上B方程f(x,y)0是曲线C的方程C方程f(x,y)0所表示的曲线不肯定是CD以上说法都正确解析曲线C可能只是方程f(x,y)0所表示的曲线上的某一小段,因此只有C正确答案C2设圆C与圆x2(y3)2 1外切,与直线y0相切,则C的圆心轨迹为()A抛物线 B双曲线 C椭圆 D圆解析设圆C的半径为r,则圆心C到直线y0的距离为r,由两圆外切可得,圆心C到点(0,3)的距离为r1,也就是说,

2、圆心C到点(0,3)的距离比到直线y0的距离大1,故点C到点(0,3)的距离和它到直线y1的距离相等,符合抛物线的特征,故点C的轨迹为抛物线答案A3(2021大连模拟)已知M(2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为()Ax2y22 Bx2y24Cx2y22(x2) Dx2y24(x2)解析MN的中点为原点O,易知|OP|MN|2,P的轨迹是以原点O为圆心,以r2为半径的圆,除去与x轴的两个交点答案D4(2021宁波模拟)已知点A(1,0),直线l:y2x4,点R是直线l上的一点,若,则点P的轨迹方程为()A. y2x By2xCy2x8 Dy2x4解析设P(

3、x,y),R(x1,y1),由知,点A是线段RP的中点,即点R(x1,y1)在直线y2x4上,y12x14,y2(2x)4,即y2x.答案B5(2021浙大附中一模)平面直角坐标系中,已知两点A(3,1),B(1,3),若点C满足12(O为原点),其中1,2R,且121,则点C的轨迹是()A直线 B椭圆 C圆 D双曲线解析设C(x,y),由于12,所以(x,y)1(3,1)2(1,3),即解得又121,所以1,即x2y5 ,所以点C的轨迹为直线,故选A.答案A二、填空题6已知两定点A(2,0)、B(1,0),假如动点P满足|PA|2|PB|,则点P的轨迹所包围的图形的面积为_解析设P(x,y)

4、,由|PA|2|PB|,得2,3x23y212x0,即x2y24x0.P的轨迹为以(2,0)为圆心,半径为2的圆即轨迹所包围的面积等于4.答案47平面上有三个点A(2,y),B,C(x,y),若,则动点C的轨迹方程是_解析(2,y),(x,y),0,0,即y28x.动点C的轨迹方程为y28x.答案y28x8设P是圆x2y2100上的动点,点A(8,0),线段AP的垂直平分线交半径OP于M点,则点M的轨迹为_解析如图,设M(x,y),由于l是AP的垂直平分线,于是|AM|PM|,又由于10|OP|OM|MP|OM|MA|,即|OM|MA|10,也就是说,动点M到O(0,0)及A(8,0 )的距离

5、之和是10,故动点M的轨迹是以O(0,0)、A(8,0)为焦点,中心在(4,0),长半轴长是5的椭圆答案椭圆三、解答题9设F(1,0),M点在x轴上,P点在y轴上,且2,当点P在y轴上运动时,求点N的轨迹方程解设M(x0,0),P(0,y0),N(x,y),(x0,y0),(1,y0),(x0,y0)(1, y0)0,x0y0.由2得(xx0,y)2(x0,y0),即x0,即y24x.故所求的点N的轨迹方程是y24x.10已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|4,动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线解如图所示

6、,以O1O2的中点O为原点,O1O2所在直线为x轴建立平面直角坐标系由|O1O2|4,得O1(2,0)、O2(2,0)设动圆M的半径为r,则由动圆M与圆O1内切,有|MO1|r1;由动圆M与圆O2外切,有|MO2|r2.|MO2|MO1|3.点M的轨迹是以O1、O2为焦点,实轴长为3的双曲线的左支a,c2,b2c2a2.点M的轨迹方程为1(x)力量提升题组(建议用时:35分钟)11已知点F,直线l:x,点B是l上的动点若过B垂直于y轴的直线与线段BF的垂直平分线交于点M,则点M的轨迹是()A双曲线 B椭圆C圆 D抛物线解析由已知得,|MF|MB|.由抛物线定义知,点M的轨迹是以F为焦点,l为准

7、线的抛物线答案D12(2021杭州模拟)坐标平面上有两个定点A,B和动点P,假如直线PA,PB的斜率之积为定值m,则点P的轨迹可能是:椭圆;双曲线;抛物线;圆;直线试将正确的序号填在横线上:_.解析设A(a,0),B(a,0),P(x,y),则m,即y2m(x2a2)当m1时,为圆;当m0时,为双曲线;当m0且m1时为椭圆;当m0时,为直线故选.答案13(2021台州质检)P是椭圆1上的任意一点,F1,F2 是它的两个焦点,O为坐标原点,则动点Q的轨迹方程是_解析由于,又P22O,设Q(x,y),则(,),即P点坐标为(,),又P在椭圆上,则有1上,即1.答案114.(2021烟台模拟)已知点

8、C(1,0),点A,B是O:x2y29上任意两个不同的点,且满足0,设P为弦AB的中点(1)求点P的轨迹T的方程;(2)摸索究在轨迹T上是否存在这样的点:它到直线x1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由解(1)分别连接CP,OP,由0,知ACBC,|CP|AP|BP|AB|,由垂径定理知|OP|2|AP|2|OA|2,即|OP|2|CP|29,设点P(x,y),有(x2y2)(x1)2y29,化简,得x2xy24.(2)存在,依据抛物线的定义,到直线x1的距离等于到点C(1,0)的距离的点都在抛物线y22px上,其中1.p2,故抛物线方程为y24x,由方程

9、组得x23x40,解得x11,x24,由x0,故取x1,此时y2.故满足条件的点存在,其坐标为(1,2)和(1,2)15如图,DPx轴,点M在DP的延长线上,且|DM|2|DP|.当点P在圆x2y21上运动时(1)求点M的轨迹C的方程;(2)过点T(0,t)作圆x2y21的切线l交曲线C于A、B两点,求AOB面积S的最大值和相应的点T的坐标解(1)设点M的坐标为(x,y),点P的坐标为(x0,y0),则xx0,y2y0,所以x0x,y0,由于P(x0,y0)在圆x2y21上,所以xy1.将代入,得点M的轨迹C的方程为x21.(2)由题意知,|t|1.当t1时,切线l的方程为y1,点A、B的坐标分别为(,1),(,1),此时|AB|,当t1时,同理可得|AB|;当|t|1时,设切线l的方程为ykxt,kR,由得(4k2)x22ktxt240.设A、B两点的坐标分别为(x1,y1),(x2,y2),则由得x1x2,x1x2.又由l与圆x2y21相切,得1,即t2k21,所以|AB| .由于|AB|,且当t时,|AB|2,所以|AB|的最大值为2.依题意,圆心O到直线AB的距离为圆x2y21的半径,所以AOB面积S的最大值为211,此时t,相应的点T的坐标为(0,)或(0,).

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服