ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:436.31KB ,
资源ID:3798252      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3798252.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【人****来】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【人****来】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【全国百强校】东北师大附中高三数学第一轮复习导学案:不等式选讲(3)A.docx)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【全国百强校】东北师大附中高三数学第一轮复习导学案:不等式选讲(3)A.docx

1、不等式选讲(2)(教案)A一、 基本学问点:(1).含有参数不等式的解法例1:解关于x的不等式 解:原不等式等价于 当即时 当即时 x-6当即时 xR。例2、解关于x的不等式 解:当即q(0,)时 x2或x1当即q=时 x当即q(,)时 1x0,即在(-1,1)上是增函数。故t的取值范围是.数学思想方法是解决数学问题的灵魂,同时它又离不开具体的数学学问在解决含参数不等式的恒成立的数学问题中要进行一系列等价转化因此,更要重视转化的数学思想(5)、能成立问题(部分成立)(存在性问题)若在区间上存在实数使不等式f(x)A成立,即f(x)A在区间上能成立, f(x) A;若在区间上存在实数使不等式f(

2、x)A成立, 即f(x)A在区间上能成立, f(x) 1 ,若0a1时 当m=1时 x当0m1时 当m0时 x0(8)、反证法:但对于一些较简洁的不等式,有时很难直接入手求证,这时可考虑接受间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法是间接证明的一种基本方法。反证法在于表明:若确定命题的条件而否定其结论,就会导致冲突。具体地说,反证法不直接证明命题“若p则q”,而是先确定命题的条件p,并否定命题的结论q,然后通过合理的规律推理,而得到冲突,从而断定原来的结论是正确的。利用反证法证明不等式,一般

3、有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;其次步 作出与所证不等式相反的假定;第三步 从条件和假定动身,应用证确的推理方法,推出冲突结果;第四步 断定产生冲突结果的缘由,在于开头所作的假定不正确,于是原证不等式成立。例1、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则 (1) 另一方面,由确定值不等式的性质,有 (2) (1)、(2)两式的结果冲突,所以假设不成立,原来的结论正确。留意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常接受反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的冲突结果,通常是指所推出的结果与已知公理

4、、定义、定理或已知条件、已证不等式,以及与临时假定冲突等各种状况。试依据上述两例,争辩查找冲突的手段、方法有什么特点?例2、设0 a, b, c , (1 - b)c , (1 - c)a ,则三式相乘:ab (1 - a)b(1 - b)c(1 - c)a 又0 a, b, c 1 同理:, 以上三式相乘: (1 - a)a(1 - b)b(1 - c)c 与冲突原式成立(9)、不等式的证明方法之四:放缩法与贝努利不等式所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法。这种方法是证明不等式中的常用方法,

5、尤其在今后学习高等数学时用处更为广泛。下面我们通过一些简洁例证体会这种方法的基本思想。例1、若是自然数,求证证明: = =留意:实际上,我们在证明的过程中,已经得到一个更强的结论,这恰恰在确定程度上体现了放缩法的基本思想。例2、求证:证明:由(是大于2的自然数)得(10)柯西不等式定理1:(柯西不等式的代数形式)设均为实数,则, 其中等号当且仅当时成立。证明:几何意义:设,为平面上以原点O为起点的两个非零向量,它们的终点分别为A(),B(),那么它们的数量积为,而,所以柯西不等式的几何意义就是:,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。定理2:(柯西不等式的向量形式)设

6、,为平面上的两个向量,则,其中等号当且仅当两个向量方向相同或相反(即两个向量共线)时成立。定理3:(三角形不等式)设为任意实数,则:分析:思考:三角形不等式中等号成立的条件是什么?定理4:(柯西不等式的推广形式):设为大于1的自然数,(1,2,)为任意实数,则:,其中等号当且仅当时成立(当时,商定,1,2,)。证明:构造二次函数: 即构造了一个二次函数:由于对任意实数,恒成立,则其,即:,即:,等号当且仅当,即等号当且仅当时成立(当时,商定,1,2,)。假如()全为0,结论明显成立。柯西不等式有两个很好的变式:变式1 设 ,等号成立当且仅当变式2 设ai,bi同号且不为0(i=1,2,n),则

7、:,等号成立当且仅当。(11)排序不等式排序不等式的一般情形一般地,设有两组实数:,与,且它们满足:,若,是,的任意一个排列,则和数在,与,同序时最大,反序时最小,即:,等号当且仅当或时成立。分析:用逐步调整法例1、已知为正数,求证:。例2、设,为正数,求证:。(12)数学归纳法数学归纳法:是一个递推的数学论证方法,论证的第一步是证明命题在n1(或n)时成立,这是递推的基础;其次步是假设在nk时命题成立,再证明nk1时命题也成立,这是递推的依据。实际上它使命题的正确性突破了有限,达到无限。证明时,关键是k1步的推证,要有目标意识。例1、证明:。例2、设,证明贝努利不等式:。二、 方法提升:三、

8、 反思感悟: 四、 课时作业:1、利用不等式的图形解不等式: ; 2、解下列不等式:(1) (2) 13解不等式: (1) 4解不等式: (1) 5利用确定值的几何意义,解决问题:要使不等式有解,要满足什么条件?6.解关于x的不等式 解:原不等式等价于 当即时 当即时 x-6当即时 xR。7、若a, b, c, dR+,求证:证:记m = a, b, c, dR+ 1 m 2 时,求证:证:n 2 n 2时, 9、已知,求证:。10、设,求证:。11、在ABC中,ha , hb ,hc 为边长a,b,c上的高,求证:asinA+bsinB+csinCha + hb +hc 12、若a0,b0,则13、在ABC中,求证:14、设为正数,证明:。15、设数列a的前n项和为S,若对于全部的自然数n,都有S,证明a是等差数列。

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服