ImageVerifierCode 换一换
格式:DOCX , 页数:3 ,大小:317.78KB ,
资源ID:3797416      下载积分:5 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3797416.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(【优教通-同步备课】高中数学(北师大版)必修五教案:2.2-解三角形的实际应用举例-参考教案2.docx)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【优教通-同步备课】高中数学(北师大版)必修五教案:2.2-解三角形的实际应用举例-参考教案2.docx

1、3 解三角形的实际应用举例教学目标1、把握正弦定理、余弦定理,并能运用它们解斜三角形。2、能够运用正弦定理、余弦定理进行三角形边与角的互化。3、培育和提高分析、解决问题的力气。教学重点难点1、正弦定理与余弦定理及其综合应用。2、利用正弦定理、余弦定理进行三角形边与角的互化。教学过程一、复习引入来源:学科网ZXXK 1、正弦定理: 2、余弦定理: ,二、例题讲解引例: (课本P62题2)飞机的飞行线路和山顶在同一个铅直平面内,已知飞机的高度为海拔20250m,速度为189km/h,飞行员先看到山顶的俯角为,经过960s(秒)后又看到山顶的俯角为, 求山顶的海拔高度(精确到1m).来源:学,科,网

2、Z,X,X,K例1 曲柄连杆机构当曲柄CB绕C点旋转时,通过连杆AB的传递,活塞作往复直线运动。当曲柄在时,曲柄和连杆成一条直线,连杆的端点A在处。设连杆AB长为,曲柄CB长为,(1)当曲柄自按顺时针方向旋转度时,其中,求活塞移动的距离(即连杆的端点移动的距离)。(2)当,时,求的长(结果精确到)分析:不难得到,活塞移动的距离为 来源:Zxxk.Com 易知所以,只要求出的长即可,在中,已知两边和其中一边的对角,可以通过正弦定理或余弦定理求出的长解:(1)设,若,则,若,则 若,在中,由余弦定理得: 即:解得:(不合题意,舍去) 若则依据对称性,将上式中的改为即可有:总之,当时, (2)当,时

3、,利用计算器得:答:此时活塞移动的距离约为例2:是海面上一条南北方向的海防警戒线,在上点处有一个水声监测点,另两个监测点分别在的正东方和处,某时刻,监测点收到发自静止目标的一个声波,后监测点,后监测点相继收到这一信号,在当时气象条件下,声波在水中的传播速度是来源:学科网ZXXK (1)设到的距离为,用表示到的距离,并求的值(2)求静止目标到海防警戒线的距离(结果精确到)分析:(1)长度之间的关系可以通过收到信号的先后时间建立起来 (2)作,垂足为,要求的长,只需要求出的长和,即的值,由题意,都是定值,因此,只需要分别在和中,求出,的表达式,建立方程即可来源:学&科&网Z&X&X&K解:(1)依

4、题意,因此:,在中, 同理: 由于: 即:解得:(2)作,垂足为,在中, 答:静止目标到海防警戒线的距离约为练习:1、如图,为了解某海疆海底构造,在海平面内一条直线上的A,B,C三点进行测量。已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得CF=110m,求的余弦值。解:作DM/AC交BE于N,交CF于M。在中,由余弦定理, .2、甲船以每小时海里的速度向正北方向航行,乙船按固定方向匀速直线航行当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距20海里当甲船航行20分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里问乙船每小时航行多少海里?解:如图,连结,由已知,又,是等边三角形,由已知,=在中,由余弦定理, 因此,乙船的速度的大小为(海里/小时)答:乙船每小时航行海里课堂小结1、本节课通过举例说明白解斜三角形在实际中的一些应用。 把握利用正弦定理及余弦定理解任意三角形的方法。2、在分析问题解决问题的过程中关键要分析题意,分清已知 与所求,依据题意画出示意图,并正确运用正弦定理和余 弦定理解题。3、在解实际问题的过程中,贯穿了数学建模的思想,其流程 图可表示为:画图形数学模型实际问题解三角形检验(答)实际问题的解数学模型的解

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服