ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:345KB ,
资源ID:3794439      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/3794439.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(高中数学必修2第三章知识点及练习题知识分享.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

高中数学必修2第三章知识点及练习题知识分享.doc

1、高中数学必修2第三章知识点及练习题精品文档第三章 直线与方程1、直线倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定= 0.2、 倾斜角的取值范围: 0180. 当直线l与x轴垂直时, = 90.3、直线的斜率:一条直线的倾斜角(90)的正切值叫做这条直线的斜率,常用小写字母k表示,也就是 k = tan。当直线l与x轴平行或重合时, =0, k = tan0=0;当直线l与x轴垂直时, = 90, k 不存在.当时,k随着的增大而增大; 当时,k随着的增大而增大; 当时,不存在。由此可知

2、, 一条直线l的倾斜角一定存在,但是斜率k不一定存在.过两点的直线的斜率公式: 注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90;(2)k与的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率,再求倾斜角。三点共线的条件:如果所给三点中任意两点的连线都有斜率且都相等,那么这三点共线;反之,三点共线,任意两点连线的斜率不一定相等。解决此类问题要先考虑斜率是否存在。4、直线方程(注意各种直线方程之间的转化)直线的点斜式方程:,k为直线的斜率,且过点,适用条件是不垂直x轴。 注意:当直线的斜率为0时,k=0,

3、直线的方程是。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示但因l上每一点的横坐标都等于x0,所以它的方程是x=x0。斜截式:, k为直线的斜率,直线在y轴上的截距为b两点式:()直线两点,截矩式:,其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。一般式:(A,B不全为0)注意:在平时解题或高考解题时,所求出的直线方程,一般要求写成斜截式或一般式。各式的适用范围 特殊的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); 5、直线系方程:即具有某一共同性质的直线(1)平行直线系平行于已知直线(是不全为0的常数)的直线系:(C为常数),所以平行于已知

4、直线的直线方程可设:垂直于已知直线(是不全为0的常数)的直线方程可设:(C为常数)(2)过定点的直线系斜率为k的直线系:,直线过定点;过两条直线,的交点的直线系方程为(为参数),其中直线不在直线系中。6、两直线平行与垂直(1)当,时,;注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。(2)当,时,;例:设直线经过点A(m,1)、B(3,4),直线经过点C(1,m)、D(1,m+1), 当(1) / / (2) 时,分别求出m的值7、两条直线的交点当 相交时,交点坐标是方程组的一组解。方程组无解;方程组有无数解与重合。8. 中点坐标公式:已知两点P1 (x1,y1)、P2(x2,y2

5、),则线段的中点M坐标为(,)例:已知点A(7,4)、B(5,6),求线段AB的垂直平分线的方程。9、两点间距离公式:设是平面直角坐标系中的两个点,则 10、点到直线距离公式:一点到直线的距离为11、两平行直线距离公式(1)两平行直线距离转化为点到直线的距离进行求解,即:先在任一直线上任取一点,再利用点到直线的距离进行求解。(2)两平行线间的距离公式:已知两条平行线直线和的一般式方程为l1:Ax+By+C1=0,l2:Ax+By+C2=0,则与的距离为一、选择题1若直线x1的倾斜角为 a,则 a( )A等于0B等于pC等于D不存在2图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则(

6、)Ak1k2k3Bk3k1k2Ck3k2k1Dk1k3k2(第2题)3已知直线l1经过两点(1,2)、(1,4),直线l2经过两点(2,1)、(x,6),且l1l2,则x( )A2B2C4D14已知直线l与过点M(,),N(,)的直线垂直,则直线l的倾斜角是( )ABCD5如果AC0,且BC0,那么直线AxByC0不通过( )A第一象限B第二象限 C第三象限D第四象限6设A,B是x轴上的两点,点P的横坐标为2,且|PA|PB|,若直线PA的方程为xy10,则直线PB的方程是( )Axy50B2xy10C2yx40D2xy707过两直线l1:x3y40和l2:2xy50的交点和原点的直线方程为(

7、 )A19x9y0B9x19y0C19x3y 0 D3x19y0 8直线l1:xa2y60和直线l2 : (a2)x3ay2a0没有公共点,则a的值是( )A3B3C1D19将直线l沿y轴的负方向平移a(a0)个单位,再沿x轴正方向平移a1个单位得直线l,此时直线l 与l重合,则直线l 的斜率为( )ABCD 10点(4,0)关于直线5x4y210的对称点是( )A(6,8)B(8,6)C(6,8)D(6,8)二、填空题11已知直线l1的倾斜角 a115,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60,则直线l2的斜率k2的值为 12若三点A

8、(2,3),B(3,2),C(,m)共线,则m的值为 13已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为 14求直线3xay1的斜率 15已知点A(2,1),B(1,2),直线y2上一点P,使|AP|BP|,则P点坐标为 16与直线2x3y50平行,且在两坐标轴上截距的和为6的直线方程是 17若一束光线沿着直线x2y50射到x轴上一点,经x轴反射后其反射线所在直线的方程是 三、解答题18设直线l的方程为(m22m3)x(2m2m1)y2m6(mR,m1),根据下列条件分别求m的值:l在x轴上的截距是3;斜率为119已知ABC的三顶点是A

9、(1,1),B(3,1),C(1,6)直线l平行于AB,交AC,BC分别于E,F,CEF的面积是CAB面积的求直线l的方程(第19题)20一直线被两直线l1:4xy60,l2:3x5y60截得的线段的中点恰好是坐标原点,求该直线方程.21直线l过点(1,2)和第一、二、四象限,若直线l的横截距与纵截距之和为6,求直线l的方程第三章 直线与方程参考答案A组一、选择题1C解析:直线x1垂直于x轴,其倾斜角为902D解析:直线l1的倾斜角 a1是钝角,故k10;直线l2与l3的倾斜角 a2,a3 均为锐角且a2a3,所以k2k30,因此k2k3k1,故应选D3A解析:因为直线l1经过两点(1,2)、

10、(1,4),所以直线l1的倾斜角为,而l1l2,所以,直线l2的倾斜角也为,又直线l2经过两点(2,1)、(x,6),所以,x24C解析:因为直线MN的斜率为,而已知直线l与直线MN垂直,所以直线l的斜率为1,故直线l的倾斜角是5C解析:直线AxByC0的斜率k0,在y轴上的截距0,所以,直线不通过第三象限 6A解析:由已知得点A(1,0),P(2,3),B(5,0),可得直线PB的方程是xy507D8D9B解析: 结合图形,若直线l先沿y轴的负方向平移,再沿x轴正方向平移后,所得直线与l重合,这说明直线 l 和l 的斜率均为负,倾斜角是钝角设l 的倾斜角为 q,则tan q10D解析:这是考

11、察两点关于直线的对称点问题直线5x4y210是点A(4,0)与所求点A(x,y)连线的中垂线,列出关于x,y的两个方程求解二、填空题(第11题)111解析:设直线l2的倾斜角为 a2,则由题意知:180a21560,a2135,k2tan a2tan(18045)tan45112解:A,B,C三点共线,kABkAC,解得m13(2,3)解析:设第四个顶点D的坐标为(x,y),ADCD,ADBC,kADkCD1,且kADkBC1,1解得(舍去) 所以,第四个顶点D的坐标为(2,3)14或不存在解析:若a0时,倾角90,无斜率若a0时,yx 直线的斜率为15P(2,2).解析:设所求点P(x,2)

12、,依题意:,解得x2,故所求P点的坐标为(2,2)1610x15y360解析:设所求的直线的方程为2x3yc0,横截距为,纵截距为,进而得c = 17x2y50解析:反射线所在直线与入射线所在的直线关于x轴对称,故将直线方程中的y换成y三、解答题18m;m解析:由题意,得3,且m22m30解得m由题意,得1,且2m2m10解得m19x2y50解析:由已知,直线AB的斜率 k因为EFAB,所以直线EF的斜率为因为CEF的面积是CAB面积的,所以E是CA的中点点E的坐标是(0,)直线EF的方程是 yx,即x2y50 20x6y0解析:设所求直线与l1,l2的交点分别是A,B,设A(x0,y0),则B点坐标为(x0,y0)因为A,B分别在l1,l2上,所以得:x06y00,即点A在直线x6y0上,又直线x6y0过原点,所以直线l的方程为x6y0212xy40和xy30解析:设直线l的横截距为a,由题意可得纵截距为6a直线l的方程为点(1,2)在直线l上,a25a60,解得a12,a23当a2时,直线的方程为,直线经过第一、二、四象限当a3时,直线的方程为,直线经过第一、二、四象限综上所述,所求直线方程为2xy40和xy30收集于网络,如有侵权请联系管理员删除

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服